

Roxhill Developments Limited

M1 Junction 15 West - Roade Bypass

Interpretative Ground Investigation Report

313583-02 (00)

Darren Bench

RSK GENERAL NOTES

Project No.: 313583-02 (00)

Title: Preliminary ground investigation interpretative report: M1 Junction 15 West:

Roade Bypass

Client: Roxhill Developments Ltd (Roxhill), Lumonics House, Valley Drive, Swift Valley,

Rugby, Warwickshire, CV21 1TQ

15th November 2017 Date:

Office: RSK, Abbey Park, Humber Road, Coventry, CV3 4AQ. Tel No: 02476 505600

Status: Final

Signature

Reviewed and **Author** Romani Salama approved by

Signature

15th November 2017

15th November 2017 Date: Date:

Project manager Michael Lawson

Signature

15th November 2017 Date:

RSK Environment Limited (RSK) has prepared this report for the sole use of the client, showing reasonable skill and care, for the intended purposes as stated in the agreement under which this work was completed. The report may not be relied upon by any other party without the express agreement of the client and RSK. No other warranty, expressed or implied, is made as to the professional advice included in this report.

Where any data supplied by the client or from other sources have been used, it has been assumed that the information is correct. No responsibility can be accepted by RSK for inaccuracies in the data supplied by any other party. The conclusions and recommendations in this report are based on the assumption that all relevant information has been supplied by those bodies from whom it was requested.

No part of this report may be copied or duplicated without the express permission of RSK and the party for whom it was prepared.

Where field investigations have been carried out, these have been restricted to a level of detail required to achieve the stated objectives of the work.

This work has been undertaken in accordance with the quality management system of RSK Environment Ltd.

CONTENTS

1	INT	RODUC	TION	6
	1.1	Terms	of reference	6
	1.2	Propos	sed development	6
	1.3	Object	ives	7
	1.4	Scope		7
	1.5	Backg	round information	8
2			ionsILS	
2	2.1		cation	
	2.2		opography, geography and geomorphology	
	2.3	Site de	escription	. 10
3	SUN	IMARY	OF AVAILABLE INFORMATION	. 11
			ned geology and expected ground conditions	
4 5			NVESTIGATION	
J			d conditions	
	5.1	5.1.1	Agricultural topsoil	
		5.1.2	Possible made ground	
		5.1.3	Made Ground	
		5.1.4	Oadby Member (Glacial Till)	
		5.1.5	Glaciofluvial deposits	
		5.1.6	Blisworth limestone formation	
		5.1.7	Rutland formation	
		5.1.8	Results of soakage testing	
	5.2		dwater	
	5.3		d gas regime	
	5.4		olfactory evidence of soil and groundwater contamination	
	5.5		d model	
6	QUA	ATITA	TIVE RISK ASSESSMENT	. 28
	6.1	Linkag	es for assessment	. 28
	6.2	Metho	dology and results	. 29
		6.2.1	Inhalation of vapour	. 29
		6.2.2	Inhalation of fugitive dust	. 29
		6.2.3	Ingestion and absorption by direct contact; including hand to mouth contact and absorption through the skin	. 29
		6.2.4	Uptake of contaminants by vegetation potentially impacting plant growth	. 30
		6.2.5	Migration by surface run-off	. 30
		6.2.6	Migration into groundwater (Principal Aquifer)	. 30
		6.2.7	Transportation via the land drains in to the sewerage system or to outlets into the environment (drainage and streams)	. 32
_	6.3		ary of quantitative risk assessment	
7			ENT OF POTENTIAL LAND CONTAMINATION	
	7.1		ial sources of contamination	
	1.2	Prelim	inary contaminated land risk assessment	. 33

		7.2.1	Risks to human health during construction	33
		7.2.2	Risk to human health post construction	33
		7.2.3	Risks to local ecology and landscape planting	34
		7.2.4	Risks to surface water	34
		7.2.5	Risks to groundwater	34
		7.2.6	Risks due to ground gas	34
		7.2.7	Risk to buried structures and services	
8			NICAL SITE ASSESSMENT	
	8.1	Prelim	inary geohazard and geotechnical assessment	
		8.1.1	Mining and natural cavities	
		8.1.2	Man made voids or obstructions	36
		8.1.3	Earthworks	36
		8.1.4	Existing cut slopes	37
		8.1.5	Gradient on site	37
		8.1.6	As-dug cut material suitability	37
		8.1.7	Embankment stability	37
		8.1.8	Bridge foundations	38
		8.1.9	Cutting stability	40
		8.1.10	Earthworks – Materials reuse	41
		8.1.11	Aggressive soil chemistry	41
		8.1.12	Highway construction	41
		8.1.13	Groundwater levels	43
			Drainage	
9	REU		MATERIALS	
	9.1		of suitable materials	
			for landfill disposal	
			l tax	
			ONSNDATIONS	
			al recommendations	
	11.1	Genera	arrecommendations	40
T A	D. E	_		
	BLES			
		_	y at the site	
			targeted within the ground investigation	
		_	y encountered at the site	
			ary of insitu and exsitu soil testing for glacial till	
			ary of insitu and exsitu soil testing for Glaciofluvial deposits	
			ary of insitu and exsitu soil testing for weathered Blisworth Limestone Formation	
			ary of insitu and exsitu soil testing for Blisworth Limestone Formation	
			ary of insitu soil testing for weathered Rutland Formation	
			ary of in-situ and laboratory test results for Solid Rutland Formation	
			nary of soakage testing	
			pary of groundwater strike and rise during ground investigation	
			nary of groundwater monitoring	
			nary of gas monitoring results	
Tab	ole 14	4: Identi	fied potentially relevant pollutant linkages	28

Table 15: Comparison of soil concentrations against background concentrations	30
Table 16: Summary of groundwater contaminant exceedances	31
Table 17: Preliminary advice for the design and construction of piled foundations	38
Table 18: Illustration of typical pile working loads for CFA piles	39
Table 19: Summary of CBR values derived from in-situ DCP tests	42
FIGURES	

Figure 1 Site location plan

Figure 2 As Built Exploratory Hole Location Plan

Figure 3 As Built Exploratory Hole Location Plan (showing preliminary highway design)

APPENDICES

APPENDICES

Appendix A	Service constraints
Appendix B	Summary of legislation and policy relating to contaminated land
Appendix C	Site photographs
Appendix D	Risk assessment methodology
Appendix E	Exploratory hole records
Appendix F	Ground gas monitoring data
Appendix G	Groundwater monitoring records
Appendix H	Laboratory certificates for chemical soil analysis
Appendix I	Laboratory certificates for groundwater analysis
Appendix J	Human health generic assessment criteria
Appendix K	Generic assessment criteria for phytotoxic effects
Appendix L	Generic assessment criteria for controlled waters
Appendix M	Generic assessment criteria for potable water supply pipes
Appendix N	Comparison of soil analysis to human health criteria
Appendix O	Comparison of water laboratory data to controlled waters GAC
Appendix P	Certificates of geotechnical analysis
Appendix Q	Updated geotechnical risk register
Appendix R	Updated contaminated land register
Appendix S	HASWASTE

1 INTRODUCTION

RSK Environment Limited (RSK) has been commissioned by Roxhill Developments Limited to carry out a Geotechnical and Geoenvironmental Assessment of the site for the proposed alignment of the bypass around the village of Roade, Northamptonshire.

The proposed highway stretches over approximately 2.5km in length and has various land owners and land uses which predominately comprise agricultural fields intersected from north to south by an active railway line (4 line track) in deep cutting, Blisworth Road, a shallow drainage ditch, a rough track and finally an east west trending dismantled railway line close to the most south westerly extent.

This report is specific to the investigation undertaken on the proposed highway scheme only.

The interpretative ground investigation report is presented herein. This report is subject to the RSK service constraints given in Appendix A.

1.1 Terms of reference

This report comprises a factual report in general accordance with the requirements of:

- BS5930:2015 'Code of practice for ground investigations';
- BS10175:2011 Investigation of potentially contaminated sites Code of Practice;
- Environment Agency CLR 11 2004a 'Model Procedures for the Management of Land Contamination' (Contaminated Land Risk Assessment); and
- BS EN 1997-2:2007. Eurocode 7 Geotechnical design Part 2: Ground investigation and testing.

1.2 Proposed development

It is understood that the site is being considered for a bypass around the western edge of the village of Roade to relieve present and predicted future traffic volumes.

The redline boundary for the proposed road is shown upon Roxhill Developments Ltd and BWB Master plan ref: NGW-BWB-GEN-XX-SK-D-SK01, dated April 2016. Proposals are understood to comprise of a single 7.30m wide carriageway plus 1m hard strips and footway/cycleway provision along the route. The proposed road will start south of the village of Roade and will extend in a northwards direction around the western side of the village before branching east and crossing the railway line and reconnecting with the A508 (Northampton Road) north of the village of Roade.

1.3 Objectives

The purpose of the investigation works undertaken were to confirm the underlying ground conditions present beneath the bypass alignment. The bypass alignment has previously been subject to a Preliminary Sources Study Report 313418-02 (00), dated December 2016. In addition, the information collated will be used to assist in the master planning design and to support the Environmental Statement being developed for the proposed scheme.

The main objectives of the investigation are to:

- Confirm the stratigraphy of the soil across the site;
- Confirm the groundwater and soil gas regime;
- Confirm the contamination status of the site using a programme of in-situ screening and laboratory analysis; and
- To provide sufficient geotechnical information characterising the strata encountered beneath the alignment.

In line with Eurocode 7, BS5930, BS10175 and CLR 11 further phases of targeted investigation may be required to provide specific data and information for detailed design of individual elements of the scheme, as the design evolves.

1.4 Scope

The project has been carried out to an agreed brief as set out in RSK's proposal ref. M1 Junction 15 West: Roade Bypass dated June 2017 in order to provide information to enable to site to be redeveloped as a new bypass including provision of a new bridge constructed across the existing railway cutting and line.

The project has been carried out to an agreed brief as set out in RSKs proposal (ref. 313583-00 (01) Specification, dated 15th June 2017.

The ground investigation fieldwork carried out at the site was undertaken in accordance with a specification developed by RSK in view of the Client's proposed development proposals.

The scope of works for the assessment include:

Inclusive within the Factual Report;

 an intrusive investigation, with associated laboratory analysis and programme of subsequent monitoring events.

Inclusive within the Interpretive Report;

- development of a refined conceptual site model followed by generic quantitative risk assessment (GQRA) to assess complete pollutant linkages that may require the implementation of migration measures to facilitate development;
- interpretation of ground conditions and ground model for the site;
- classification of the strata encountered and identification of soil properties;

- an interpretative report to assess both geotechnical and geoenvironmental risks and identify implications that will affect the detailed design of the project; and
- an assessment of the potential waste classification implications of soil arisings.

1.5 Background information

The following scheme design master plan drawing has been provided to RSK by the client:

NGW-BWB-GEN-XX-SK-D-SK01, dated June 2016.

A preliminary risk assessment (desk study) has been undertaken for the proposed development:

 M1 Junction 15 West – Roade Bypass: Preliminary sources study report (ref:313418-02), RSK, dated 7th December 2016.

1.6 Limitations

Access to numerous parcels (plots 100, 105 and 120) of land were not granted. Therefore several trial pits TP06, 08, 09, 10, 11, 19, 21, 24 and 25 were not undertaken as planned within the central portion of the route alignment. This is shown on Figure 2.

The comments given in this report and the opinions expressed are based on the ground conditions encountered during the site work and on the results of tests made in the field and in the laboratory. However, there may be conditions pertaining to the site that have not been disclosed by the investigation and therefore could not be taken into account. In particular, it should be noted that there may be areas of made ground not detected due to the limited nature of the investigation or the thickness and quality of made ground across the site may be variable. In addition, groundwater levels and ground gas concentrations and flows may vary from those reported due to seasonal, or other, effects.

Whilst asbestos containing materials were not identified during the fieldworks or supporting laboratory analysis, asbestos is often present in discrete areas. Thus, although not encountered during the site investigation, may be found during more extensive ground works or within areas not investigated.

2 SITE DETAILS

2.1 Site location

The proposed Roade bypass, referred to hereafter as "the site" is located west of the village of Roade, Northampton and is designed to bypass the village of Roade in an attempt to relieve the village of high traffic congestion. The site currently comprises of a series of agricultural fields, a dismantled railway line alignment, Blisworth Road and an existing 4 track live railway line within deep cutting. The proposed development stretches approximately 2.5 km to the west of Roade, starting south of Roade (off the A508) and extends north for approximately 1.5 km before turning eastwards for approximately 1km for the remainder of the route and reconnecting with the A508, north of Roade.

A location plan for the site is presented as Figure 1, and the boundary of the current assessment and exploratory hole locations are defined on Figure 2 and upon Figure 3 showing the currently proposed alignment.

2.2 Local topography, geography and geomorphology

The site sits within a formerly glaciated area. The land is gently undulating with a general rise from the southern extent to the north eastern corner.

The site sits within a formerly glaciated area. The land is gently undulating with a general fall to the south of the site. At its highest, the site elevation is approximately 122m AOD located where the proposed bypass branches off from the A508 Northampton Road, north of the town of Roade. The proposed bypass crosses over a railway line north-west of the town of Roade, which is located within a deep cutting. The route dips to less than 115m AOD just after it crosses Blisworth Road and the drainage ditch, before rising back to 120m AOD at its most westerly extent. At the time of the walkover the drainage ditch did not contain any water. The route then drops again towards the A508 Stratford Road, rejoining at an elevation of approximately 100m AOD, although the topography is undulating at this end of the site.

The proposed bypass is to meet a modified section of the A508 Stratford Road, at the point at which it crosses an historic, now dismantled, overgrown railway line.

The geological sequence of the majority of the site is understood to comprise Oadby Member Glacial Till (Superficial) overlying solid deposits anticipated to be the Blisworth Limestone Formation, which is principally limestone's with thin bands of fossiliferrous mudstone and marls, underlain by the succession of marine and non-marine mudstones, sandstones and limestone's of the Blisworth Clay, Rutland Formation, Stamford Member, Northampton Sand Formation with the Whitby Mudstones at depth. Locally other deposits including Cornbrash limestone's might be encountered at depth at the northern extent.

The geological sequence of the area is understood to be one of fossiliferrous mudstone and siltstone, laminated and bituminous in part, with thin siltstone or silty mudstone beds

and rare fine-grained calcareous sandstone beds deposited within sea conditions and eroded by periods of glaciations and later deposition of Oadby Member and Glaciofluvial Deposits.

2.3 Site description

A site walkover was undertaken on the 22nd July 2016 and 24th August 2016. The proposed alignment of the proposed bypass predominately comprises fields, intersected by, from north to south, a 4 track live railway in deep cutting, Blisworth Road, a drainage ditch, a rough track/road and finally a dismantled former railway line.

From its northern extent, the proposed route leaves the A508 Northampton Road heading roughly west and crosses a ditch and hedge before crossing an arable field. Beyond the field the route crosses an existing 4 track live railway line (Roade Cutting SSSI) located within a steep, densely vegetated cutting. Immediately beyond the railway is an additional arable field with hedgerow boundaries. The first field is accessible from the A508 Northampton Road. This field can be accessed via a bridge over the railway line from the first field.

The route then turns south-west and passes through two livestock (sheep/cattle) fields bounded by hedgerows, between which is Blisworth Road. The field to the north of Blisworth Road is accessible via an adjacent field, while the field to the south is not accessible from the Road, and appears to be accessible via Hyde Farm.

From there the route heads south and crosses a drainage ditch between the southern livestock field and into a final livestock field, bounded again by hedgerows and semi mature trees and a shallow ditch, accessible via Hyde Farm. The route then turns southeast and crosses two arable fields separated by a farm track which provides access to the fields, and originates at Dovecote Farm off of Blisworth Road.

The route then terminates at the A508 Stratford Road, at the site of a dismantled railway. The dismantled railway is heavily overgrown by dense shrubs, brambles and semi-mature and mature trees. The end of the former railway immediately adjacent to the A508 is fully overgrown. An area of low growth and grassed verge is present adjacent to the A508, while the point at which the proposed bypass and the modified A508 will meet is accessed via the arable field to its north, mentioned above. The dismantled railway can also be accessed via a gated entrance of an adjacent field, further south along the A508.

3 SUMMARY OF AVAILABLE INFORMATION

3.1 Published geology and expected ground conditions

Table 1 provides further details of the anticipated geological succession.

Table 1: Geology at the site

Geological unit	Description	Thickness (m)	
Surfacing and Buried Structures: (source: Envirocheck History Maps, Site Observation, Service records, Site clearance)	surface to nominal thicknesses.	No thickness recorded	
Made Ground / Topsoil: (source: BGS Maps, Available Borehole	The entire site is anticipated to be underlain by a cultivated plough layer or topsoil and turf resulting in subsoil or growing medium. Given its extensive use for arable crops and livestock grazing, it is anticipated that this layer could extend between 0.2m and 0.6m depth and is anticipated to be derived from the underlying Glacial Till, and would be anticipated to be sandy gravelly clay in nature.	No thickness	
Logs, Envirocheck Geology & History Maps, memoirs)	There is the potential for made ground to be present below and adjacent to any roads or railways that cross the route of the proposed bypass. The thickness of highway constructions is anticipated to be no greater than 0.45m in depth and likely to comprise bound macadam surfacing over granular sub base and perhaps granular hardcore capping.	recorded	
Superficial geology			
Oadby Member (Glacial Till/ Diamicton Till) (source: BGS Maps, Available Borehole Logs, Envirocheck Geology & History Maps, memoirs)	The majority of the site appears to be underlain by a mantle of Oadby Member (Diamicton Till/Glacial Till) which is anticipated to be primarily over consolidated sandy gravelly clay. It may also contain sandy gravel strings, lenses and pockets which may contain perched or confined groundwater. Limited deposits of Glaciofluvial Deposits are anticipated to be present at the southern end of the route and are likely to take the form of sands and gravels.	No thickness recorded	
Solid geology			

Geological unit	Description	Thickness (m)
Blisworth Limestone Member/ Rutland Formation	The entirety of the site is indicated to be underlain by the Blisworth Limestone Formation, likely to be weathered beneath superficial deposits to firm to stiff grey and brown clays tending to off-white or yellowish limestone with thin marl and mudstone bands. Calcareous shell and fossil fragments are common throughout these deposits. Beneath which the Blisworth Clay Formation is likely to be encountered. In the extreme south of the site, the Rutland Formation is present, and is likely to be weathered to grey clays and silts.	>1,350m
	Below this strata, it is likely that the Stamford Member which is anticipated to comprise sandstone and interbedded siltstone will be present overlying the Northampton Sand Formation, all above the Whitby Mudstone Formation.	
Mining (source: Coal Authority web viewer, BGS Maps, Available Borehole Logs, Envirocheck records, Geology & History Maps)	None identified	N/A
Faults (source: BGS Maps, Available Borehole Logs, Envirocheck Geology Maps, memoirs)	None identified	N/A
Opencast Quarrying (source: Coal Authority web viewer, BGS Maps, Envirocheck History Maps)	Some sand and gravel quarries noted within 200m of the site, although none expected on site.	N/A
Mineral Protection (source: Local Authority Plan)	None identified	N/A
Soil Chemistry (source: Envirocheck / BGS)	Available soil chemistry data suggests that the natural soils anticipated to be present at shallow depths across the site are unlikely to contain any significantly elevated concentrations of contaminants that would be considered to represent a risk to Human Health for a commercial development.	N/A

Source: British Geological Survey: http://mapapps.bgs.ac.uk/geologyofbritain/home.html (accessed on 11th October 2017).

4 GROUND INVESTIGATION

Intrusive investigation fieldworks were undertaken between 5th September and 20th September 2017 and were followed by a series of four, weekly ground gas and groundwater monitoring and sampling events.

The investigation undertaken at the site comprised the following:

- Setting out and service Clearance (RSK SafeGround);
- Sinking of 5 combined windowless and rotary follow on cored boreholes to depths between 15.00m and 30.00m bgl;
- Sinking of 12 window sample boreholes to depths between 3.00m and 5.45m;
- Excavation of 18 trial pits to depths between 0.50m and 4.50m;
- Sinking of 13 DCP tests to a depth of 1m;
- Installation of 17no combined groundwater/gas monitoring wells to varying depths within superficial deposits and bedrock including provision of lockable vandal proof covers;
- Four return visits to monitor groundwater levels & ground gas concentrations;
- One visit (first visit) to purge the groundwater from all boreholes;
- One visit (second visit) to undertake water sampling from boreholes;
- Surveying in of as built exploratory hole positions using GPS surveying equipment;
- Associated sampling and in-situ testing including SPTs;
- Soil and rock sample geotechnical laboratory testing; and
- Soil and groundwater sample chemical laboratory testing.

Full records and details covering the methodology of the investigation, the location rationale for exploratory holes, exploratory hole logs, completed laboratory testing results and exploratory hole location drawings are presented separately within the Factual Ground Investigation Report (313583 – 01 (00).

The ground investigation was developed to supplement the findings of the desk study research and to confirm or otherwise the conceptual side model presented within the Preliminary Sources Study Report. Additionally the investigation was required to obtain geotechnical and chemical properties to allow design assessments to be refined.

Specific issues targeted by the ground investigation are identified in Table 2 below:

Table 2: Issues targeted within the ground investigation

	Area	Issue	Exploratory Holes	Testing	Comments
Geo-environmental	General site coverage to obtain base line parameters for underlying geochemical characteristics of soil and groundwater	General chemical characteristics of the Topsoil, near surface sub soils and groundwater as the site is Greenfield	All exploratory positions	Chemical analysis	To confirm contamination risk potential as well as to confirm potential for aggressive ground for concrete mix designs
	General site coverage to obtain base line parameters for underlying geotechnical characteristics of superficial geology	General geotechnical characteristics	All window sample positions and all trial pit positions	Hand shear vane, SPT's	To confirm distribution, classification, uniformity in plan and depth
	General site coverage to obtain base line parameters for underlying geotechnical characteristics of bedrock geology	General geotechnical characteristics	BH01 – BH05	SPTs	To confirm strata succession and strength characteristics
Geofechnical	Cuttings and earthworks properties	Strata depths, properties and groundwater levels	All exploratory positions	SPT, PI, QUTxI, Hand Shear Vane, Consols, Compaction, MCV/MCC, Recompacted CBR	To confirm strata strength characteristics and uniformity. To confirm distribution, classification and reusability in earthworks filling operations
	Embankment Foundations	Strata depths and properties and groundwater levels	All exploratory positions	Classification and Compaction testing	To confirm strata strength characteristics and uniformity
	Preliminary bridge foundation design	Strata depths and properties and groundwater levels	BH01 and BH02	PI, QUTxI, Consols	To confirm bearing capacity and settlement characteristics and uniformity of strata
	Hard standing and highways	Strata depths and properties	All exploratory positions	DCP's Classification,	To confirm distribution,

	Area	Issue	Exploratory Holes	Testing	Comments
	and earthworks	and groundwater levels		Compaction testing and recompacted CBR.	classification, uniformity in plan and depth
	Flood Attenuation Ponds	Soil Infiltration	TP22, TP23 and TP26	Soakaways	To obtain infiltration characteristics and effectiveness of soakaways or need for lining of ponds

5 GROUND CONDITIONS IDENTIFIED

The results of the intrusive investigation and subsequent laboratory analysis undertaken are detailed below. The descriptions of the strata encountered, notes regarding visual or olfactory evidence of contamination, list of samples taken, field observations of soil and groundwater, in-situ testing and details of monitoring well installations are included on the exploratory hole records presented separately in the Factual Ground Investigation Report (313583-01 (00)).

5.1 Ground conditions

The exploratory holes revealed that the site is underlain by variable but nominal thicknesses of agricultural topsoil over drift deposits predominately identified to be the Oadby member (glacial till) however locally Glaciofluvial deposits were also encountered (within the central area of the proposed route).

Underlying these superficial deposits, the predominant geological member in the north of the route is the Blisworth Limestone Formation; however, as the route extends southwards, the Rutland Formation was encountered. This appears to confirm the stratigraphical succession described within the conceptual site model.

For the purpose of discussion, the ground conditions are summarised in Table 3 and the strata discussed in subsequent subsections.

Table 3: Geology encountered at the site

Strata	Exploratory holes encountered	Depth to Top of stratum m bgl	Depth to Bottom of stratum m bgl
Agricultural Topsoil	All exploratory positions except BH01, BH02, TP3, TP4, WS11 and WS12	GL	Ranged from 0.20m to 0.40m
Possible Made Ground	BH01, BH02, WS11, WS12, TP03, TP04, TP22 and TP23	GL	Ranged from 2.30m – 5.30m *base not proven within TP22, TP23, and WS12
Made Ground	TP16A and WS05	GL	0.40m to 0.50m
Oadby Member (Glacial Till)	All exploratory positions except WS3, TP3, TP12, TP15,TP16, TP17, TP22, TP23	0.20	*base not proven within WS01, WS02, WS03, WS10, WS11, WS12
Glaciofluvial Deposits (locally absent)	WS03 and TP12	0.30	1.20m to 3.30m

Strata	Exploratory holes encountered	Depth to Top of stratum m bgl	Depth to Bottom of stratum m bgl
Blisworth Limestone Formation	BH01 to BH05, TP02, TP13, TP14, TP15, TP16, TP17 and TP18	0.30m to 9.00m	Ranged from 6.50m to 18.65m *base not proven within any trial pits

Note: Thickness' are proven thickness in exploratory holes and not full thickness of strata. Strata are likely to be thicker.

5.1.1 Agricultural topsoil

The topsoil (ploughed surface materials) across the site was typically uniform, comprising dark brown or orange brown sandy, gravelly occasionally silty CLAY. The gravel content was variable, but comprised variations of angular to sub-rounded fine to coarse flint, quartzite and chalk with frequent roots and rootlets. The Agricultural Topsoil ranged in thickness between 0.20m to 0.40m thick across most of the site.

The recorded laboratory test results are detailed within the Factual Ground Investigation Report presented separately.

11 soil samples of these deposits were sent for contamination screening testing.

No obvious visual or olfactory evidence of contamination was identified within any of these deposits encountered during the ground investigation.

5.1.2 Possible made ground

Possible made ground was encountered only within the exploratory holes near the Roade Cutting (BH01, BH02, TP22, TP23, WS11 and WS12). This was typically uniform, comprising brown mottled orange, sometimes multicoloured slightly sandy, slightly gravelly clay with occasional to frequent cobbles and boulders of limestone. The gravel content was variable but comprised variations of angular to sub-rounded, fine to coarse, flint, quartzite, chalk and limestone. These deposits were very hard to distinguish from the underlying natural Glacial Till as no foreign bodies were identified, however consideration of the strata colouration variation, consistency and strengths and visual review of the topography leads us to postulate that the Glacial deposits in the upper half of the deep cutting had been removed during the cutting construction and placed as haunches at the top of the cutting slopes where the cutting slope gradients are reduced in angle for stability and where the ground appears to rise from the surrounding ground levels fairly noticeably.

Two soil samples of these deposits were sent for contamination screening testing.

No obvious visual or olfactory evidence of contamination was identified within any of these deposits encountered during the ground investigation.

5.1.3 Made Ground

Definitive made ground was encountered within WS05 and TP16A which was located in the vicinity of the disused railway track in the southern most field of the proposed road.

This comprised of limestone cobbles and boulders which were typically used for railway ballast. This was proven to be 0.40m thick. No other Made Ground was encountered and these were found to directly overlie natural strata.

Two soil samples of these deposits were sent for contamination screening testing.

No obvious visual or olfactory evidence of contamination was identified within any of these deposits encountered during the ground investigation.

5.1.4 Oadby Member (Glacial Till)

The Oadby Member was typically encountered beneath the topsoil across the entirety of the site. On occasion, this stratum was located at depth beneath (possible made ground deposits within BH01 and BH02 close to the railway cutting crest.

The soils encountered typically comprised soft to firm orange brown slightly gravelly sandy CLAY; with a gravel content consisting of angular to sub-rounded fine to coarse flint, quartzite, chalk fragments. With depth this stratum becomes firm to stiff dark brown or bluish grey, occasionally mottled orange, slightly silty CLAY.

Exploratory holes indicate that these stratums can vary in thickness between 0.40m to 5.10m with the majority of holes where full thickness was defined suggesting an approximate thickness of 1 to 3m. However, the base of the stratum was typically not proven within the shallower trial pits and window sampler boreholes.

Three soil samples of these deposits were sent for contamination screening testing.

These deposits were recorded to be generally stable during excavation as trial pits did not collapse when left open to undertake soakaway testing.

A summary of the in-situ and laboratory test results in this stratum is presented in Table 4 below and are included within the Appendix E and P.

The recorded in-situ test results and laboratory test results are detailed within the Factual Ground Investigation Report presented separately.

Table 4: Summary of insitu and exsitu soil testing for glacial till

Soil parameters	Range	No Tests
Moisture content (%)	14 - 27	4
Liquid limit (%)	42 - 65	3
Plasticity limit (%)	16 – 30	
Plasticity index (%)	26 - 35	
Plasticity term	Intermediate to high	n/a
Shrinkage Potential	Medium	
Clay (%)	24 - 35	3
Silt (%)	25 - 38	
Sand (%)	23 - 34	
Gravel (%)	4 - 17	
Earthworks Class	Class 2	
Maximum Dry Density – 4.5kg Rammer (Mg/m ³)	1.80	1

Soil parameters	Range	No Tests
Optimum Moisture Content - 4.5kg Rammer (%)	17	
Natural Moisture Contents of samples tested (%)	13	
SPT 'N' values	6 – 50	23
Undrained shear strength inferred from SPT 'N' values (kN/m²)	25 - 210	
Stiffness term	Soft to very stiff	
Undrained shear strength measured by onsite hand vane testing (kN/m²)	38 – 126	21
Stiffness term	Soft to stiff	

Given the topography, individual borehole plan positions and inherent heterogeneity of the strata in terms of its thickness and material structure there is considerable variation with depth and level. However, as expected in most instances the data indicates a progressive increase in SPT and corresponding strength of the strata with depth with most materials initially being soft to firm closer to surface becoming stiff with depth.

5.1.5 Glaciofluvial deposits

The Glaciofluvial deposits were encountered within two exploratory holes (TP12 and WS03) approximately half way along the proposed route. The thickness of the stratum was proven to range from 1.00m to 3.00m.

The soils encountered comprised orange slightly silty slightly clayey slightly gravelly sand or orangish brown sandy gravel, with gravel fraction typically fine to coarse quartzite, flint, chalk and rare limestone.

A summary of the in-situ and laboratory test results in this stratum is presented in Table 5 below and are included within the Appendix E and O.

Table 5: Summary of insitu and exsitu soil testing for Glaciofluvial deposits

Soil parameters	Range	No Tests
Moisture content (%)	10 - 16	2
Clay (%)	10 - 14	2
Silt (%)	12 - 15	
Sand (%)	56 – 67	
Gravel (%)	8 - 18	
Earthworks Class	2	
Maximum Dry Density – 4.5kg Rammer (Mg/m ³)	1.82	1
Optimum Moisture Content - 4.5kg Rammer (%)	13	
Natural Moisture Contents of samples tested (%)	16	

5.1.6 Blisworth limestone formation

The Blisworth limestone formation stratum was encountered in two forms a weathered form and a solid form.

5.1.6.1 Weathered Blisworth limestone formation

The Blisworth limestone formation was regularly encountered in its weathered form. This was typically observed below the Oadby Member and above the solid deposits. However, this was occasionally observed directly below the topsoil.

The deposits encountered typically comprised a firm to stiff grey slightly gravelly clay with fine to coarse sub-angular to sub-rounded limestone gravels.

Table 6: Summary of insitu and exsitu soil testing for weathered Blisworth Limestone Formation

Soil parameters	Range	No tests
Moisture content (%)	17	1
Liquid limit (%)	33	
Plasticity limit (%)	18	
Plasticity index (%)	25	
Plasticity term	Low	
Volume change potential	Medium	
SPT 'N' values (depth plots presented separately)	14 – 50	17
Undrained shear strength inferred from SPT 'N' values (kN/m²)	58 - 210	
Stiffness term	Firm to very stiff	
Undrained shear strength measured by onsite hand vane testing (kN/m²)	42 – 110	9
Stiffness term	Firm to stiff	

One soil sample of these deposits was sent for contamination screening testing.

5.1.6.2 Solid Blisworth limestone formation

Solid geology associated with the Blisworth limestone formation was encountered directly beneath the weathered zones within BH02, BH03, BH04, BH05, TP14 and TP15. This stratum was encountered directly beneath the Oadby Member within TP01, TP02, TP05, TP13 and TP18. The thickness of the solid deposit was proven within all rotary boreholes (BH01 to BH05) and was thickest within the northern part of the proposed highway alignment. The thickness typically ranged from 8.55m (BH02) to 2.50m (BH05).

The bedrock geology associated with the Blisworth limestone formation was encountered as a medium strong to extremely strong grey (sometimes yellow orange brown) limestone.

A summary of the in-situ and laboratory tests in the Blisworth limestone formation is presented in Table 7 below and are included within Appendix E and Appendix P.

The recorded in-situ test results and laboratory test results are detailed within the Factual Ground Investigation Report presented separately.

Table 7: Summary of insitu and exsitu soil testing for Blisworth Limestone Formation

Soil parameters	Range	No tests
Moisture content (%)	2.00 – 27	9
SPT 'N' values (depth plots presented separately)	>50	24
Bulk Density (Mg/m³)	2.48 – 2.49	2
Dry Density (Mg/m³)	2.37 – 2.37	2
Moisture Content (%)	4.7 - 5	2
Unconfined Compressive Strength (MPa)	6 – 27	2
Point Load (I ₅₀) (MN/m ²)	0.17 – 3.82	5
Equivalent estimated UCS of Point Load (MPa) (using factor of 20)	3.4 – 76.4	5
Natural Moisture Content at test	2 – 9.5	5

As expected in most instances the strata graduates from residual weathered soils to rock. Initially the weathered strata are noted to be more granular and fractured tending to more intact sections with depth.

No obvious visual or olfactory evidence of contamination was identified within any of these deposits encountered during the ground investigation.

5.1.7 Rutland formation

The Rutland formation was encountered in two forms a weathered form and a solid form. This formation was more typically encountered more towards the southern part of the proposed road development.

5.1.7.1 Weathered Rutland Formation

The Rutland formation was often encountered in its weathered state directly below the Oadby member in the southern areas of the site and are indicated to be present from a minimum top depth of between 0.70m to 2.00m (WS04, WS05, WS06, WS07, WS08 and WS09). However, typically, the depth to the top of the weathered Rutland formation is approximately 1.30 – 1.60m bgl.

The deposits encountered typically comprised a firm to stiff green grey silty clay or green grey slightly sandy gravelly silt, or an extremely weak yellow laminated siltstone. A summary of the in-situ in the weathered Rutland Formation is presented in Table 8 below and are included within Appendix E.

Table 8: Summary of insitu soil testing for weathered Rutland Formation

Soil parameters	Range	No tests
SPT 'N' values	8 – 50	23
Stiffness term	Soft to very stiff	

One soil sample of these deposits was sent for contamination screening testing.

5.1.7.2 Solid Rutland formation

Solid geology associated with the Rutland formation was encountered directly beneath the Blisworth limestone formation within trial pits 16 and 17, however it's thickness was not proven within these exploratory holes. The formation was also encountered below the solid Blisworth limestone formation within all rotary boreholes (BH01 – BH05).

The solid geology associated with the Rutland formation was encountered as medium strong to strong grey brown silty mudstone or an extremely strong grey limestone.

A summary of the in-situ and laboratory test results in the Rutland Formation is presented in Table 9 below and are included within the Appendix P.

The recorded in-situ test results and laboratory test results are detailed within the Factual Ground Investigation Report presented separately.

Table 9: Summary of in-situ and laboratory test results for Solid Rutland Formation

Soil parameters	Range	No tests
Moisture content (%)	8.3	1
SPT 'N' values (depth plots presented separately)	42 – 50	19
Point Load (I ₅₀) (MN/m ²)	0.09* – 3.63^ * mudstone ^ Limestone	4
Equivalent estimated UCS of Point Load (MPa) (using factor of 20)	1.8 – 72.6	
Natural Moisture Content at test	1.7 - 13	

As expected in most instances this indicates a progressive increase in SPT and corresponding strength of the strata with depth as the strata graduates from weathered to rock.

5.1.8 Results of soakage testing

Three soakaway tests were attempted close to locations where it is thought that storm water attenuation ponds or drainage swales might be located to check to see if any infiltration may occur and to confirm whether the ground conditions are suitable for the adoption of soakaway sustainable urban drainage systems.

The results of the soakage testing are summarised in the table below.

Table 10: summary of soakage testing

Trial pit	Geological unit	Test result (m/s)
TP22	Oadby Member (cohesive)	Insufficient drop in water level. Unable to calculate infiltration rate by extrapolation due to lack of soakage.
TP23	Oadby Member (cohesive)	*2.13x10 ⁻⁶
TP26	Oadby Member (cohesive)	Insufficient drop in water level. Unable to calculate infiltration rate by extrapolation due to lack of soakage.

Notes: * The infiltration rate was extrapolated to obtain the infiltration rate. Test was not completed sufficiently as insufficient soakage achieved.

5.2 Groundwater

Groundwater was encountered during the investigation as detailed in the table below.

Table 11: summary of groundwater strike and rise during ground investigation

вн/тр	Stratum	Strike (m bgl)	Level (mAOD)	Rise (m)	Level (mAOD)
BH02	PRF	25.20	96.25	1.60	97.85
BH03	BLF	8.00	111.60	0.30	111.90
BH05	RF	9.00	92.76	1.00	93.76
WS06	WRF	3.50	93.65	-	-

Notes: GT = Glacial Till, WRF = Weathered Rutland Formation, PRF = Possible Rutland Formation, RF = Rutland Formation and BWL = Blisworth Limestone Formation

Where not listed, exploratory holes did not encounter groundwater strikes during drilling. It should be noted that the speed of drilling and casing of holes can often mask minor seepages and water strikes. The addition of air mist flush during rotary coring to advance the hole may obscure minor water strikes, however major water strikes would be evident.

It should be noted that groundwater levels might fluctuate for a number of reasons including in the short term the prevailing weather conditions immediately before and during investigation and monitoring works and longer term seasonal variations should be expected.

The results of the subsequent groundwater monitoring and well surveying exercise are summarised in Table 12.

Table 12: Summary of groundwater monitoring

Monitoring well	Response Zone (m bgl)	Strata	Ground Level elevation (m AOD)	Monitored Groundwater Depth Range (mb GL)	Monitored Groundwater Elevation (m AOD)
BH01	10.00 – 20.00	BWL	119.70	16.53 to 17.45	103.17 to 102.25
BH02	20.00 - 30.00	PRF	121.45	20.12 to 20.21	101.24 to 101.33
вноз	8.00 – 15.00	BWL/RF	119.60	12.33 to 12.56	107.27 to 107.04
BH04	7.00 – 11.00	RF	115.71	10.12 to 9.40	105.59 to 106.31
BH05	8.00 – 12.00	RF	101.76	6.85 to 7.10	94.91 to 94.66
WS01	1.00 – 2.50	GT	120.71	Dry	-
WS02	3.00 - 5.00	GT	119.35	1.18 to 3.05	118.17 to 116.30
WS03	1.00 – 3.00	GT	115.32	3.00 (Damp Base)*	112.32
WS04	1.00 – 2.00	GT/WRF	104.35	dry to 1.87	102.45 to 102.48
WS05	2.00 – 4.00	WRF	102.94	3.95 to dry	98.99 to 98.95
WS06	2.00 – 4.00	WRF	97.15	2.36 to 2.62	94.75 to 94.53
WS07	1.00 – 2.50	WRF	102.01	1.91 to 2.07	100.10 to 99.94
WS08	1.00 – 3.00	WRF	101.76	2.65 to 2.70	99.11 to 99.06
WS09	1.00 – 3.00	GT/WRF	113.77	dry to 3.08	110.69 to 110.68
WS10	2.00 – 4.00	GT	117.97	2.75 to 3.23	115.22 to 114.74
WS11	3.00 – 4.53	GT	121.33	Dry	116.80
WS12	3.00 - 5.00	GT	119.74	3.58 to 4.80	116.16 to 114.94

^{*} Was noted to be dry three out of four visits

Notes: GT = Glacial Till, WRF = Weathered Rutland Formation, PRF = Possible Rutland Formation, RF = Rutland Formation and BWL = Blisworth Limestone Formation

The findings appear to confirm the site has localised perched water within discrete pockets of granular material within the Oadby Member and weathered zones of the Rutland Formation. Additionally, localised seepages from the cohesive Oadby Member may have also accumulated within the base of standpipes instrumented within these cohesive deposits. The variable nature of the granular and cohesive strata present throughout the Oadby Member deposits results in pockets of water bearing granular strata and pore water release, which are not thought to be linked or consistent across the site.

Deeper installed instruments placed within rotary boreholes within the Blisworth limestone and Rutland Formation (BH01 and BH02, near the Roade railway cutting) suggest a continuous and deeper water table is present within these strata at depths of approximately 101.24mAOD to 103.17mAOD. Deeper instruments within BH03, BH04 and BH05, (installed within the Rutland Formation) towards the central and southern half

of the development suggest that the deeper water table is in hydraulic connectivity with these.

It should also be appreciated that some of the instrumentation installed cover large response zones including some more permeable strata trapped between less permeable strata. If the more permeable strata yield water these standpipes fill up to the draining layer trapped in the less permeable mudstone surrounding them below and therefore maintain what appears to be a water table, which may not reflect reality and possibly only represent perched water confined by cohesive strata above and below.

Following purging of three well volumes, six water samples were obtained from monitoring instrumentation for contamination screening testing. No obvious visual or olfactory contamination was identified when taking these samples.

5.3 Ground gas regime

The results of the ground gas monitoring and testing carried out are given in Appendix F. The maximum results are recorded in Table 13.

Table 13: Summary of gas monitoring results

Borehole	Response zone (m)	Probable source(s) of ground gas	Number of monitoring visits	Methane (%) (max)	Carbon dioxide (%) (max)	Oxygen (%) (min)	Flow rate (I/hr) (max)	Monitored Water level (m bgl)
BH01	10.00 - 20.00	None identified	4	0.0	0.2	20.8	0.1	16.53 to 17.45
BH02	20.00 – 30.00	None identified	4	0.0	0.4	16.8	0.1	20.21 to 20.12
BH03	8.00 – 15.00	None identified	4	0.0	0.6	19	0.1	12.33 to 12.56
BH04	7.00 – 11.00	None identified	4	0.0	0.9	20.0	0.1	10.12 to 9.40
BH05	8.00 – 12.00	None identified	4	0.0	0.5	19.1	0.2	6.85 to 7.10
WS01	1.00 – 2.50	None identified	4	0.0	1.7	2.8	0.2	Dry
WS02	3.00 – 5.00	None identified	4	0.0	2.2	15.8	0.3	1.18 to 3.05
WS03	1.00 – 3.00	None identified	4	0.0	2.4	18.2	0	3.00
WS04	1.00 – 2.00	None identified	4	0.0	1.3	19.4	0.1	1.90 to 1.87

Borehole	Response zone (m)	Probable source(s) of ground gas	Number of monitoring visits	Methane (%) (max)	Carbon dioxide (%) (max)	Oxygen (%) (min)	Flow rate (I/hr) (max)	Monitored Water level (m bgl)
WS05	2.00 – 4.00	None identified	4	0.0	1.8	17.1	0	3.95 to 3.99
WS06	2.00 – 4.00	None identified	4	0.0	1.4	17.8	0.2	2.40 to 2.62
WS07	1.00 – 2.50	None identified	4	0.0	1.9	12.5	0.3	1.91 to 2.07
WS08	1.00 – 3.00	None identified	4	0.0	2.5	14.8	0.1	2.65 to 2.70
WS09	1.00 – 3.00	None identified	4	0.0	1.0	18.5	0.1	3.08 to 3.09
WS10	2.00 – 4.00	None identified	4	0.0	2.7	14.0	0.2	2.75 to 3.23
WS11	3.00 – 5.00	None identified	4	0.0	4.0	13.6	0.2	4.53
WS12	3.00 – 5.00	None identified	4	0.0	9.1	11.2	0	3.58 to 4.80

No obvious sources of gas were identified during the investigation and the results detailed above are believed to represent the natural soil gas conditions. Gas monitoring visits were undertaken during periods of rising, constant and falling pressures of between 1007 and 1018mbar.

5.4 Visual/olfactory evidence of soil and groundwater contamination

No visual or olfactory evidence of soil or groundwater contamination was encountered or identified during the investigations.

5.5 Ground model

In summary, the ground conditions underlying the proposed bypass route appear to comprise relatively thin agricultural topsoil which is underlain by variable thicknesses of cohesive low permeability Oadby Member (Glacial Till) which extends across the entirety of the proposed development. Minor localised pockets of Glaciofluvial deposits, are restricted to a localised area approximately half way along the highway alignment.

Possible made ground and definitive made ground have been identified in two areas of the proposed route. Firstly, possible made ground, which is assumed to be reworked natural glacial deposits from the existing railways cutting appears to have been placed upon the natural deposits of Glacial Till at the crest of the cutting in the vicinity of positions TP3, BH01, WS11, TP4, BH02 and WS12. Secondly, made ground was also identified within the disused railway line in the southern part of the site, in the vicinity of

TP16 and TP16A. This was identified as limestone cobbles and boulders which were used for railway ballast laid directly upon to natural strata.

Weathered zones of bedrock geology were typically encountered underlying the Oadby Member, however in several positions TP15, TP16 and TP17, the weathered Blisworth limestone formation was encountered directly beneath the topsoil.

Available information from the exploratory hole logs identifies that the BLF was encountered at greater depths (typically 4.00m to 4.50m within BH03, BH04 and BH05) in the southern region of the route. However, in the northern half of the route the BLF was encountered at depths slightly greater (typically 6.7m to 9.00m in BH01 and BH02, respectively).

This in turn is underlain by the Rutland Formation which was encountered at depths of 17.5m and 18.65m within BH01 and BH02, respectively. Within BH03, BH04, BH05, the Rutland Formation was encountered at shallower depths (13.3m, 10m and 6.50m), respectively.

The exploratory positions appear to confirm that the site has localised perched water in granular pockets within the glacial till and other shallower deposits. Available information within deeper boreholes suggests that there is a possible continuous water table at depth within the Blisworth Limestone Formation and Rutland Formation underlying the site.

However it is considered unlikely that the encountered groundwater beneath the site is linked to surface water receptors in the vicinity of the site. The only surface water receptor within the vicinity of the site is a drain that runs northwest to southeast through the middle section of the bypass. During the walkover of the site the drain was noted to be dry and as such is likely to only flow during periods of heavy rainfall and is not considered to be connected to groundwater beneath the site.

6 QUANTITATIVE RISK ASSESSMENT

In line with CLR11 (EA, 2004a), there are two stages of quantitative risk assessment, generic and detailed. The GQRA comprises the comparison of soil, groundwater, soil gas and ground gas results with generic assessment criteria (GAC) that are appropriate to the linkage being assessed. This comparison can be undertaken directly against the laboratory results or following statistical analysis depending upon the sampling procedure that was adopted.

6.1 Linkages for assessment

Section 5.5 outlines the refined conceptual model/ ground model which identified the linkages that required assessment after the findings of the site investigation had been considered. These linkages together with the method of assessment are presented in Table 14.

Table 14: Identified potentially relevant pollutant linkages

Potentially relevant pollutant linkage	Assessment method
1. Inhalation of vapour	Human health GAC outlined in Appendix J for soil and groundwater based on indoor inhalation exposure to vapour-phase volatile organic compounds (VOC).
2. Inhalation of fugitive dust	Direct comparison of laboratory results of soil samples compared to human health GAC in Appendix J for a proposed commercial and industrial end use .
3. Ingestion and absorption by direct contact; including hand to mouth contact and absorption through the skin	Direct comparison of laboratory results of soil samples compared to human health GAC in Appendix J for a proposed commercial and industrial end use.
Uptake of contaminants by vegetation potentially impacting plant growth	Comparison of soil data to GAC in Appendix K.
5. Migration by surface run-off; including in suspension or solution into nearby surface water receptors	Has been considered qualitatively using soil results. Consideration of soil results presented within Appendix H.
6. Migration into groundwater (principal aquifer); including leaching in the unsaturated zone and diffusion in the saturated zone.	Has been considered qualitatively using soil and groundwater results. Comparison of groundwater data to GAC in Table 1 of Appendix L.
7. Transportation via the land drains in to the sewerage	Has been considered qualitatively using soil results.

Potentially relevant pollutant linkage	Assessment method
system or to outlets into the environment (drainage ditches and streams).	Consideration of soil results presented within Appendix H.

As no structures are to be developed on the site risks from ground gases are not considered to exist but may pose a potential risk to construction workers during development.

6.2 Methodology and results

The methodology and results of the GQRA are presented for each relevant pollutant linkage in turn.

6.2.1 Inhalation of vapour

Contaminated made ground was not encountered during the site investigation and this was further proven in the chemical testing as all VOC results were noted to be below the laboratory's limit of detection. Additionally, no visual or olfactory evidence of impacted soil was observed during the site investigation and photo ionisation detection results all returned 0.00 parts per million (ppm) as such this pathway will not be considered further.

6.2.2 Inhalation of fugitive dust

Chemical testing of soil samples obtained from the site were below the relevant generic assessment criteria and therefore, it is considered any dust generated from the site would not be detrimental to human health and as such, this pathway will not be considered further.

6.2.3 Ingestion and absorption by direct contact; including hand to mouth contact and absorption through the skin

End users are defined as those who are exposed to sources of contamination on a regular and predictable basis. In the case of developments for commercial end use, the critical receptor is defined within SR3 as a 16 to 65 year old female.

The chemical test results have been compared directly to the appropriate GAC for each contamination, based on a Soil Organic Matter (SOM) of 1%. The direct comparison table, which presents the chemical laboratory data set compared against the relevant GAC, is included within Appendix J.

All samples are below the GAC and the results of the assessment indicate the strata as encountered are suitable for use.

Based on the above assessment, no potentially significant risks associated with the soil contamination have been identified and it is considered that the site may be regarded as suitable for the proposed end use. It should however be noted that investigations should be undertaken in the areas that were inaccessible, however given the history of the site defined within the desk based studies it is not considered likely that any significant

contamination sources or contaminants would be encountered within these areas, indeed it is understood that part of the area is noted to be occupied by an unusually undisturbed habitat (see separate ecological assessments for more information).

6.2.4 Uptake of contaminants by vegetation potentially impacting plant growth

The results have been compared with the GAC presented in Appendix K for this linkage. The results indicate that a relevant pollutant linkage is unlikely to exist associated with phytotoxic effects. No exceedances were recorded and therefore it is considered that this pollutant linkage does not exist, therefore this will not be considered further.

6.2.5 Migration by surface run-off

The potential for leaching has been considered qualitatively using soil results. No relevant sources of contamination were identified at the site that would be considered as creating a risk via surface runoff.

Analysis of TPHCWG, PAHS, pesticides and herbicides were typically at the Limit of Detection (LOD) within the soil samples tested with occasional minor detections of PAHs (maximum total PAH of 2.07mg/kg).

Analysis of metals indicated that the metals concentrations detected in soils were typically less than expected background concentrations within the area as shown in Table 15.

Table 15: Comparison of soil concentrations against background concentrations

Analyte	Maximum Soil Concentration detected (mg/kg)	Background soil concentration (mg/kg)	Source
Arsenic	11	15-25	Envirocheck
Cadmium	1.3	<1.8	Envirocheck
Chromium	39	60-90	Envirocheck
Lead	96	<100	Envirocheck
Nickel	33	30-45	Envirocheck
Copper	33	21-35	BGS website – background map
Selenium	<1	0.29	UK soil observatory

It is therefore considered that the sample results do not indicate that a risk to drains via surface runoff exists.

6.2.6 Migration into groundwater (Principal Aquifer)

No relevant sources of contamination were identified at the site. Soil concentrations at the site are generally typical of those recorded in natural strata and topsoil are at concentrations less than expected background concentrations as indicated in the

previous section. The results of the comparison of the groundwater results to the UK Drinking water standards indicate there are several exceedances of the standards as noted in the table below.

Table 16: Summary of groundwater contaminant exceedances

Analyte	U.K./EC DWS	No. samples screened	No. exceedances of EQS	Location of highest concentration (value)
Sulphate	250 (mg/l)	6	4	WS10 (1520mg/l)
Boron	1000 (μg/l)	6	2	BH01 (2220µg/l)
Nickel	20 (μg/l)	6	2	WS02 (29 μg/l)
Selenium	24 (µg/l)	6	1	WS02 (24 μg/l)

The Blisworth Limestone Formation is a member of the Blue Lias Group which is known to be a pyritic strata with naturally occurring sulphates which are known to precipitate out within these deposits. In addition when pyrite is oxidised this leads to the formation of sulphuric acid, which reduces the pH of groundwater, as observed within the laboratory data presented in Appendix L. Therefore the presence of naturally occurring pyrite and sulphates would explain the slightly elevated levels of sulphate in groundwater.

The mobility of heavy metals typically increases with a reduction of PH so it is possible that the slightly elevated metals present within some of the groundwater samples is a result of reduced pH concentrations leaching metals from naturally occurring soils.

Slightly elevated concentrations of boron were only noted within BH01 and BH02 which are located on both sides of the Roade railway cutting. It is plausible that the elevated concentrations within the groundwater at this location may be associated with the railway line, where track levels are some 15m below surrounding ground levels at the highway over bridge crossing point and only some 1-3m above the monitored groundwater levels in the two deep holes located either side of the cutting from which these samples were taken. Boron based compounds are typically used as a non-toxic woodworm and dry root treatment and are likely to have been used on the railway for the treatment of railway sleepers.

The identified nickel and selenium exceedances are considered to be marginal and as such are unlikely to represent a risk to the aquifer given the low permeability of the superficial deposits present across the site. Table 15 has also indicated that the detected soil concentrations are typically lower than expected background concentrations.

Therefore it is considered that the site investigation has not indicated there to be significantly elevated concentrations present in groundwater beneath the site that has been caused by anthropogenic sources of contamination along the length of the road bypass. Risks to the Principal Aquifer are considered to be low.

6.2.7 Transportation via the land drains in to the sewerage system or to outlets into the environment (drainage and streams)

The potential for leaching has been considered qualitatively using the soil results presented in Appendix H.

As can be seen in section 6.2.5 and Table 15 the soil tests undertaken indicate that concentrations of contaminants are typically below expected background concentrations and are therefore are also considered unlikely to represent a risk via this potential pollutant linkage.

6.3 Summary of quantitative risk assessment

The site is currently predominately used for arable farm land with the exception of the area of the Roade railway cutting (not part of the site but straddled by a proposed bridge) and the former railway line towards the southern end of the proposed route.

Intrusive investigations carried out across the site have confirmed that the site is directly underlain by natural soils and no contaminated strata were identified during the field works.

Furthermore, comparison of laboratory testing results of soils obtained from the ground investigation indicate that pollutant linkages are unlikely to exist for risk to human health, phytotoxic effects, or the underlying aquifer. Exceedances of metals and sulphates were identified within groundwater, however, due to the generally minor nature of exceedance, general lack of onsite sources, they are not considered to pose a risk. Elevated boron concentrations detected in groundwater in BH01 and BH02 were considered to have potentially been caused by the railway line that runs between them.

7 ASSESSMENT OF POTENTIAL LAND CONTAMINATION

7.1 Potential sources of contamination

Likely ground contamination resulting from the current and former land uses has been determined from the desk study research and the relevant Department of the Environment Industry Profiles.

The Assessment of Potential Land Contamination based upon site walkover and available data collated is included within the Preliminary Sources Study Report for the site ref: 313418 – 02 (00) presented separately within the Contaminated Land Risk Register. This register has been updated to reflect the findings in these recent investigations and an updated version is included in Appendix R.

This report updates the initial assessment by taking account of:

 the Quantitative Risk Assessment of the chemical analysis of soil and groundwater samples taken from the recent supplementary ground investigations and assessment of gas monitoring results also undertaken as part of the recent supplementary ground investigations.

In summary, the ground investigation has not identified any significant areas of Made Ground or potential contamination confirming as expected that the vast majority of the site is undisturbed Greenfield land underlain by clean natural geological strata and as such negligible risk has been determined to exist to end users or controlled waters.

The information detailed above has been used to update the Contaminated Land Risk Assessment (Conceptual Site Model) Matrix included in Appendix R.

The main identified risks are discussed below in more detail however reference should be made to the risk matrix to understand all of the risks assessed

7.2 Preliminary contaminated land risk assessment

7.2.1 Risks to human health during construction

The human health assessment presented in Section 6.2.3 has not indicated there to be any risks to construction workers as no contamination has been identified, the strata present are for the most part natural and scheme will be built using clean site won materials or / and suitable clean imported material. Therefore the risk to human health during construction is considered to be negligible.

7.2.2 Risk to human health post construction

The human health assessment presented in Section 6.2.3 has not indicated there to be any risks to end users.

Given the nature of the proposed scheme is for a highway, human exposure to soils and groundwater will be extremely low with soils covered by hard standing minimising any potential contact pathways.

7.2.3 Risks to local ecology and landscape planting

The phytotoxicity assessment presented in Section 6.2.4 indicated that potential risks to plant growth are unlikely to exist. Given that the crops and flora are thriving upon the site and that no significant Made Ground or contamination has been observed that the scheme will be built using clean site won materials or / and suitable clean imported material the risk to the local ecology from contamination is considered to be Negligible.

7.2.4 Risks to surface water

No risks to surface water receptors were identified to the site in its current conditions as indicated in sections 6.2.5 and 6.2.7.

The greatest risks to surface waters are from potential uncontrolled release of silt, created during construction activities and subsequent effects on aquatic flora and fauna. This will be controlled by a suitable site specific construction environmental management plan and code of practice.

7.2.5 Risks to groundwater

No risks to groundwater are currently considered to exist at the site. Careful consideration will need to be given to suitability of imported materials if required. Also controls will be required during the construction programme to ensure that any potentially contaminative substances, particularly fuels, are contained sufficiently to prevent any uncontrolled release to the aquifer.

7.2.6 Risks due to ground gas

The anticipated geology is not indicative of widespread presence of strata likely to naturally degrade and produce harmful soil gases. The environmental database report has identified a landfill to the south east of the site. Monitoring of ground gas on the site has yielded no concentrations of methane gas, very low concentrations of carbon dioxide (normal conditions) and no to very low flow conditions and as such indicates that there are no on site sources of soil gas and that the landfill south west of the site is unlikely to pose a risk to the site or construction workers involved on the project. Indeed the presence of low permeability cohesive soils would inhibit movement of ground gas from any off site sources.

As the proposed scheme design for the site is a highway, the exposure to ground gases posing a risk to human health post-construction is considered to be negligible.

In regards to ground gases posing a risk to workers during the construction it is considered that there is a very low risk to personnel from asphyxiation where they have to enter below ground excavations or in ground inspection chambers, provided suitable atmosphere testing is carried out and confined spaces protocols are observed.

7.2.7 Risk to buried structures and services

The soils beneath the site are known to include naturally occurring sulphates and as such in ground concrete will need to be designed to accommodate the risks represented by contact with such sulphates.

As such careful consideration should be given to the design chemical and sulphate class of concrete used within the development particularly when in contact with the ground.

In addition consideration will need to be given to the potential for sulphate induced heave especially where the materials noted above are used within a cut and fill program where soils would be significantly disturbed allowing a greater oxidation potential.

This assessment of the potential for chemical attack on buried concrete is based on current BRE guidance. The desk study and site walkover indicate that, for the purposes of this assessment of the aggressive chemical environment, the site should be considered as a Greenfield that has not been subject to previous industrial development.

A suite of chemical analyses appropriate to this site classification was carried out on samples within BH01, BH02 and BH03, targeted at the location of the bridge.

The results of chemical tests carried out indicate 2:1 water soil extract sulphate contents of up to 652mg/l with pH values in the range of 6.63 to 9.04. In addition groundwater analysis indicates sulphate concentrations up to 1520mg/l.

Based on the characteristic values above for soil and groundwater, the initial Aggressive Chemical Environment for Concrete (ACEC) Classification is AC-3, with a Design Sulphate Class of DS-3. This assumes nominally mobile groundwater conditions.

Due to the potential for the pyrite bearing materials within the natural geology across the site, characteristic values of Total Potential Sulphate (TPS) and Oxidisable Sulphides (OS) have also been determined for the site.

The results of the laboratory testing indicate maximum values of 4.32% (TPS) and 3.91% (OS). As the oxidisable sulphides is greater than 0.30% within all the samples, with the exception of one within BH02 at 12.27m bgl, pyrite s probably present. On this basis the Aggressive Chemical Environment for Concrete Classification is AC-4 with a Design Sulphate Classification of DS4.

It is recommended that further testing is undertaking at detailed design stage to confirm this over a broader selection of sample depths.

8 GEOTECHNICAL SITE ASSESSMENT

8.1 Preliminary geohazard and geotechnical assessment

Using the available information and taking into account the ground model for the site, the Preliminary Geotechnical Risk Register presented within the Preliminary Resources Study Report (313418-02) has been revised and updated and is presented within Appendix Q and highlights several potential risks associated with the site. The main identified risks are discussed below in more detail however reference should be made to the risk matrix to understand all of the risks assessed.

8.1.1 Mining and natural cavities

The site is not within an area affected by coal mining or brine extraction. The geology is not conducive to the formation of large natural cavities. This has been confirmed by the ground investigation which has confirmed the ground model.

8.1.2 Man made voids or obstructions

No voids have been identified during the ground investigation.

8.1.3 Earthworks

Cut to fill earthworks are anticipated to be required to be undertaken to achieve the proposed redevelopment vertical and horizontal alignments.

In order to reduce the risk of excessive cost for offsite disposal and on site importation it is assumed that:

- · site won materials will be utilised
- and that a cut to fill volume balance will be achieved.

The ground investigation has revealed that the site is underlain by the Oadby Member (Glacial Till) which is cohesive in nature and therefore moisture content sensitive. Many UK cohesive soils tend to be wet of the optimum for compaction and therefore there is considered to be a moderate risk that these soils may need soil modification or stabilisation to render them suitable for reuse within structural fill beneath buildings and hard standing. Further classification and earthworks investigations and trials are required to fully inform detailed design and specification, however the materials identified would be classed as a Class 2 cohesive general fill material.

When considering lime modification or stabilisation account must be taken of the risks of creating heave through the chemical reaction with naturally occurring sulphates within the clays soils present, therefore prior testing will be required to confirm if this risk is present so that it may be mitigated in the mix design.

8.1.4 Existing cut slopes

A deep railway cutting is located near the northern end of the proposed route and is considered to be stable, as no signs of instability were identified during the walkover or intrusive investigation. However, it should be noted that limited access was available when viewing the cutting from the public right of way footbridge.

8.1.5 Gradient on site

Cut and fill earthworks may be required to develop the site into a suitable highway vertical alignment, as such, slopes may be created as part of the design. No earthworks plan has been provided to RSK, as such, no detailed slope assessment has been made. Ground conditions identified to date do not suggest that the existing ground represents significant or unusual risks.

8.1.6 As-dug cut material suitability

The site is underlain by natural soils which are considered to be suitable for reuse. These are predominately cohesive in nature and are these sensitive to moisture content change. Further earthwork investigation is required to appropriately classify materials to be reused for the proposed scheme.

8.1.7 Embankment stability

Preliminary road layouts have been provided and it is considered that minor cut and fill works are required to complete the proposed road. No detailed design of proposed embankments has been provided to RSK and as such, no detailed stability assessment can be made.

If embankments are to be constructed it is assumed that clean site won materials will be suitable for reuse within the embankment construction to avoid excessive costs for importation of materials to form the embankment. The design of the embankment will need to take account of the classification of the materials being utilised for its construction as well as the founding stratum. Options for increasing side slopes and reducing footprint and volume may be explored and these may include reinforced embankments (geogrids) or soil stabilisation (lime and cement) or even retaining walls if required.

The risk of failure of embankments is increased where fine grained soils are used to construct them particularly if insufficient compaction and drainage is designed and the works proceed too quickly. Therefore it is recommended that staged construction is undertaken and that granular basal layers is installed and linked to the wider drainage network to avoid the build-up of pore water pressures in fine soils as works progress. This will aid and speed up consolidation and increase stability. Alternatively or additionally the use of soil stabilisation or reinforced earth might be considered.

Embankment slopes must be designed appropriately with regard to the stability of the soils being used to construct the embankment and take account of the strength of the underlying foundation soils. However it is understood that they will have been designed with a conservative slope angle of no steeper than 1:3 which is normally acceptable in

the long term for formation of embankments using most British soils upon reasonable founding stratum.

Drainage will need to be carefully designed to cope with surface water and to avoid runneling and softening of the slope faces and softening in the foundation soils, in particular at the toe of the slopes.

8.1.8 Bridge foundations

At this stage given the depth of the cutting, its steep sides, the importance of the infrastructure and taking into account the strata identified to be present on each side it is recommended that a piled foundation solution is adopted. This should extend foundations down into the solid strata at depth and ensure that the bridge loads are taken down below the base of the cutting avoiding loading the cutting side slopes.

Preliminary recommendations for the design and construction of pile foundations in relation to the ground conditions identified beneath the site are set out in Table 17. The preliminary recommendations given below are based on the field results obtained on site today and will subject to confirmation in the final report.

Table 17: Preliminary advice for the design and construction of piled foundations

Design/construction considerations	Design/construction recommendations
Pile type	The construction of both driven and bored (CFA or rotary) piles is considered technically feasible at this site.
Possible constraints on choice of pile type	Given that the site is located adjacent to the railway lines/embankment, it is likely that vibration/noise associated with pile driving may not be acceptable particularly as the bridge will span a deep cutting. CFA borings may struggle to penetrate the limestone to sufficient depths to avoid loading the cutting face. There it is considered that rotary bored piles may be required to ensure sufficient depth into rock head if high loads are required to be supported.
Temporary casing	Given a likely presence of groundwater strikes within overlying made ground strata, bored piles will require temporary casing throughout this depth.
Limitations afforded by ground	For the purpose of assessing preliminary pile capacities the probable made ground has been presumed not to contribute to the load-carrying capacity for the piles. At this time, no negative skin friction has been considered due to presence of significant depths of probable made ground. It should be considered or included in the final design by others.
For the purpose of assessing preliminary pile capacities the	The presence of any buried sub-structures or other obstructions within made ground may lead to some difficulty during piling. Where buried obstructions are encountered, it will be necessary to either relocate the pile(s) or make allowance for removing the obstruction.
Hard strata	An allowance should be made for chiselling or slow boring within 'rock' bands within the clay formation and the thicker beds of Limestone and Mudstone.

Design/construction considerations	Design/construction recommendations		
Pile design parameters	Pile design parameter	CFA	
for Clay	Undrained shear strength c _u (kN/m ²)	4.5*SPT N Values (for Clay) and triaxial results	
	Adhesion factor α	0.50	
	End bearing factor (N _c)	9	
Pile design parameters	Shaft friction factor (ks.tan δ)	0.80	
assumed for Limestone and Mudstone	Limiting end bearing (kN/m²)	12500	
General parameters	Limiting concrete stress (kN/m²)	7.5N/mm ²	
	Limiting shaft friction (kN/m²)	110	
	Global margin of safety	2 (with load testing) and 2.5 (without)	
Special precautions relating to bored pile shafts and bases	Bored pile concrete should be cast as soon after completion of boring as possible and in any event the same day as boring.		
	Prior to casting the base of the pile bore should be clean, otherwise a reduced safe working load will be required. Similarly, if the pile bore is left open the shaft walls may relax/soften, leading to a reduced safe working load.		

The design procedure for piles varies considerably, depending on the proposed type of pile. However, for illustrative purposes gives likely working pile loads for traditional bored, cast-in-situ concrete piles of various diameters and lengths, based on the design parameters given in Table 18. For this purpose, the soil profile in boreholes (BH01 & BH02) has been considered. It has been assumed that little or no positive skin friction will be obtained from ground level to about 5.0m depth due to possible thick made ground. The preliminary pile loads below are based on forming rock sockets a minimum 2 x up to 5 x pile diameter into the bedrock.

Table 18: Illustration of typical pile working loads for CFA piles

Depth of pile (m)	Diameter of pile (m)	End bearing Qb (kN)	Shaft Friction Fs (kN)	Ultimate Pile Capacity (kN)	Allowable Pile Capacity (kN) FoS = 2.0	Allowable Pile Capacity (kN) FoS = 2.5
11	0.30	884	362	1246	623	498
	0.35	1203	423	1625	813	650
	0.40	1571	483	2054	1027	822
	0.45	1988	544	2532	1266	1013
	0.50	2454	604	3058	1529	1223
	0.60	3534	725	4259	2130	1704
12	0.30	884	438	1321	661	529

Depth of pile (m)	Diameter of pile (m)	End bearing Qb (kN)	Shaft Friction Fs (kN)	Ultimate Pile Capacity (kN)	Allowable Pile Capacity (kN) FoS = 2.0	Allowable Pile Capacity (kN) FoS = 2.5
	0.35	1203	511	1713	857	685
	0.40	1571	584	2155	1077	862
	0.45	1988	657	2645	1322	1058
	0.50	2454	730	3184	1592	1274
	0.60	3534	876	4410	2205	1764
	0.30	884	521	1404	702	562
	0.35	1203	608	1810	905	724
13	0.40	1571	694	2265	1133	906
13	0.45	1988	781	2769	1385	1108
	0.50	2454	868	3322	1661	1329
	0.60	3534	1041	4576	2288	1830
	0.30	884	611	1495	747	598
	0.35	1203	713	1916	958	766
14	0.40	1571	815	2386	1193	954
14	0.45	1988	917	2905	1452	1162
	0.50	2454	1019	3473	1737	1389
	0.60	3534	1222	4757	2378	1903
15	0.30	884	709	1593	796	637
	0.35	1203	827	2030	1015	812
	0.40	1571	946	2516	1258	1007
	0.45	1988	1064	3052	1526	1221
	0.50	2454	1182	3636	1818	1455
	0.60	3534	1418	4953	2476	1981

It should be stressed that the above capacities do not take into consideration pile group effects which is more pronounced for a large number of closely spaced piles.

Notwithstanding the above, it is recommended that a specialist piling contractor should be contacted at an early stage for their advice on the most suitable pile type and capacity for the strata encountered at this site. In particular the piling specialist will need to confirm the ability of their equipment to form of rock sockets within the bedrock and depth of penetration practically achievable based on their previous experience in the local area.

8.1.9 Cutting stability

The preliminary highway alignment appears to suggest that little or only minor cut and fill works are required. No detailed geometry of proposed cuttings has been provided to

RSK and as such, no detailed stability assessment has been made. However it is understood that they will have been designed with a conservative slope angle of no steeper than 1:3 which is normally acceptable in the long term for most British soils.

8.1.10 Earthworks - Materials reuse

In this case it is expected that embankments will be constructed from site-won arisings from the cutting works.

It is anticipated that the majority of soils excavated from the site will be cohesive soil associated with the Glacial Till and would be considered to be a Class 2 material. It is expected that granular fractions of the Glaciofluvial Deposits potentially present within localised areas could be suitable for reuse within embankment fill as a Class 1 general fill if encountered in any significant quantity.

There is considered to be a low to moderate risk that the underlying mudstone and perhaps the overlying cohesive till (derived in part from the underlying strata) will include high sulphates. As such careful consideration should be given to the design and specification of earthworks given to the potential for sulphate induced heave especially where the materials noted above are used within a cut and fill program where soils would be significantly disturbed allowing a greater oxidation potential. Soil stabilisation techniques will also require careful consideration for the same reasons. Such materials would however be suitable for reuse within landscape features where the potential for heave does not present a risk.

According to the CL:AIRE guidance "The Definition of Waste: Development Industry Code of Practice" (version 2, March 2011), any material that may be otherwise considered by the Environment Agency as waste (such as made ground), if dealt with in accordance with the Code of Practice under a Materials Management Plan (MMP) will not be considered as waste if used for the purposes of land development. Any Clean and Naturally occurring material may be reused on the site of origin without the need to be included within an MMP.

8.1.11 Aggressive soil chemistry

The soils underlying the site were anticipated to include naturally elevated levels of sulphates (gypsum) and ground concrete mix will be designed to accommodate these risks. The assessment is presented with Section 7.6 has indicated a classification of DS4 and AC4.

In addition consideration will need to be given to the potential for sulphate induced heave especially where the materials noted above are used within a cut and fill program where soils would be significantly disturbed allowing a greater oxidation potential, this can be a particular problem where lime stabilisation is utilised to improve soil strengths.

8.1.12 Highway construction

As the site requires cut to fill earthworks to achieve the required development levels, it is anticipated that engineering earthworks design specification will be provided to cover these elements and is likely to include a performance specification for the formation levels beneath the highways in both cut and filled embankment areas.

Embankment earthworks designs will need to be checked for foundation bearing, settlement and slope stability to ensure that the embankments will not suffer detrimental settlement or failure once constructed. Similarly any new cuttings and existing cuttings (Roade Cutting) will also need to be assessed for long term stability.

In the 1m of current existing ground level the exploratory holes have revealed a soil profile comprising topsoil, over glacial till. The potentially poorest sub-grade material within this profile is the topsoil, however this is assumed to be stripped prior to construction.

In pavement design terms, the groundwater conditions are anticipated to comprise a low water table, i.e. at least 1m below the pavement formation level.

The estimated minimum, equilibrium soil-suction, California bearing ratio (CBR) value for the soils and groundwater conditions described above under a completed pavement is 3 %, based upon Table C1 in TRRL (1984) Report LR1132.

The results of in-situ DCP testing indicate that the near surface soils (assuming a cut of 450m) have a CBR value that ranges from between 3.5% to 30%, with most results falling in around 3.5-7% the results are summarised in Table 19.

Table 19: Summary of CBR values derived from in-situ DCP tests

Test location	Material type	Minimum CBR value determined at or just below anticipated formation level
TP01	2	6%
TP02	2	10%
TP03	2	7%
TP04	2	16%
TP04 (test 2)	2	20%
TP05	2	5%
TP07	2	5%
TP12	2	5%
TP13	2	3.5%
TP14	2	4%
TP15	2	30%
TP17	2	30%
TP20	2	9%
TP26	2	7%

The recommended sub-grade soil CBR value for road pavement design is therefore 3%. This value assumes that during construction the formation level will be carefully compacted and any soft spots removed and replaced with well-compacted granular fill.

It is normal practice to assume the sub-grade will be frost-susceptible as a minimum requirement for adoption and as such the thickness of sub-base must be sufficient to

give a total thickness of non-frost-susceptible pavement construction over the soil of not less than 450 mm.

8.1.13 Groundwater levels

The Oadby Member is an unproductive strata, and monitoring events have shown that localised perched water is generally only present where discrete localised granular pockets are present within these deposits. However, these do not seem to be connected to form a shallow water table.

Monitoring events have indicated a deeper confined groundwater table is present within the Blisworth Limestone Formation/Rutland Formation with groundwater levels in range of between 101.30mAOD to 102.50mAOD within the area of Roade Cutting (BH01 and BH02, respectively). As the proposed highway alignment route progresses southwards, the groundwater table appears to rise with water levels ranging from between 108.8mAOD to 116.58mAOD.

Assuming that a high perched groundwater table is present, cutting slopes could require drainage systems to be designed and installed to intersect water bearing confined strata intersected by the cutting slopes and to filter it away longitudinally and horizontally to avoid softening and degradation of more susceptible softer strata beneath. Alternative face or cut off drains behind the cut face might also be considered as alternatives depending upon the detailed value engineering design goals.

The scheme design should also attempt to avoid cutting below major water tables to avoid dewatering and drainage problems. In this case it is unlikely that the main groundwater table will be breached.

8.1.14 Drainage

Soakaway tests within shallow strata (Oadby Member) displayed poor infiltration characteristics as such; alternative drainage solutions may be required.

9 REUSE OF MATERIALS

9.1 Reuse of suitable materials

It is understood that no soil wastes are anticipated to be generated from the site with a complete cut to fill balance being achieved in modelling.

As the site has not been previously developed all excavation works are expected to generate only clean and naturally occurring soils.

Under the Waste Framework Directive naturally occurring soils are not considered waste if re-used on the site of origin. Therefore it should not be necessary to either obtain a licence or prepare a Materials Management Plan in accordance with the CL; AIRE Code of Practice.

9.2 Waste for landfill disposal

Whilst it is not anticipated that any soils will be removed to landfill an initial assessment of waste classification has been undertaken using the soil contamination data. This is presented within Appendix S. The results suggest that the soils tested would be classified as Non Hazardous for disposal. Given that arisings are anticipated to be natural strata it is possible that they could be classified as inert waste, however full Waste Acceptance Criteria analysis would be required to confirm this.

9.3 Landfill tax

Waste producers disposing of material to landfill are required to pay landfill tax by HM Revenue and Customs.

The tax is chargeable by weight (tonnage) and two rates apply, either standard or lower rate. The lower rate only applies to those less polluting wastes as set out in the Landfill Tax (Qualifying Material) Order 2011, which include naturally occurring rock and soil, concrete, some minerals, some furnace slags and ash, and some low-activity organic compounds. Evidence confirming that the waste qualifies for the lower rate will be required, and standard rate tax will apply for the whole waste load for any loads of mixed waste.

Currently (since 1 April 2017), standard rate landfill tax is £86.10 per tonne.

The lower rate of landfill tax applicable to less polluting wastes (i.e. 'inert' wastes) remains at £2.70 per tonne.

Material disposed of at a soil treatment centre will not be subject to landfill tax.

10 CONCLUSIONS

The geology of the site comprises of predominately glacial till across the entirety of the site, with some Glaciofluvial deposits within the centre. This is underlain by the Blisworth limestone formation, which is all underlain by the Rutland Formation.

The site is primarily considered to be Greenfield and there is little evidence to suggest that there are any significant potential sources of contamination likely to be present that would detrimentally impact upon the proposed scheme design, end users, controlled water or neighbours within areas of the site that were investigated.

Minor exceedances of the groundwater GACs for some metals and sulphates were identified, however due to the general lack of on-site sources, low permeability nature of the near surface strata and potential for pyritic bearing strata within Blue Lias Formation (Blisworth Limestone), this is not considered to be a risk. Ground concrete must be designed accordingly.

No specific geo-hazards or risks were identified that would affect the proposed scheme design, construction and alignment.

All geotechnical risks are normal to a project of this type and would be anticipated to be resolved using normal civil engineering techniques.

Piled foundations are likely to be required to support the bridge across the deep railway cutting (Roade Cutting) to ensure loads are transferred down to strata beneath the slope face to avoid slope instability risks and to provide sufficient bearing for the bridge structure.

A cut and fill earthworks balance is anticipated to be achievable as all materials should be suitable for use as general fill for the construction of the highway. The 1:3 side slopes currently proposed for all cuttings and embankments are anticipated to be suitable, however, slope stability assessments will be required at detailed design stage as the design evolves to ensure that all slopes are stable.

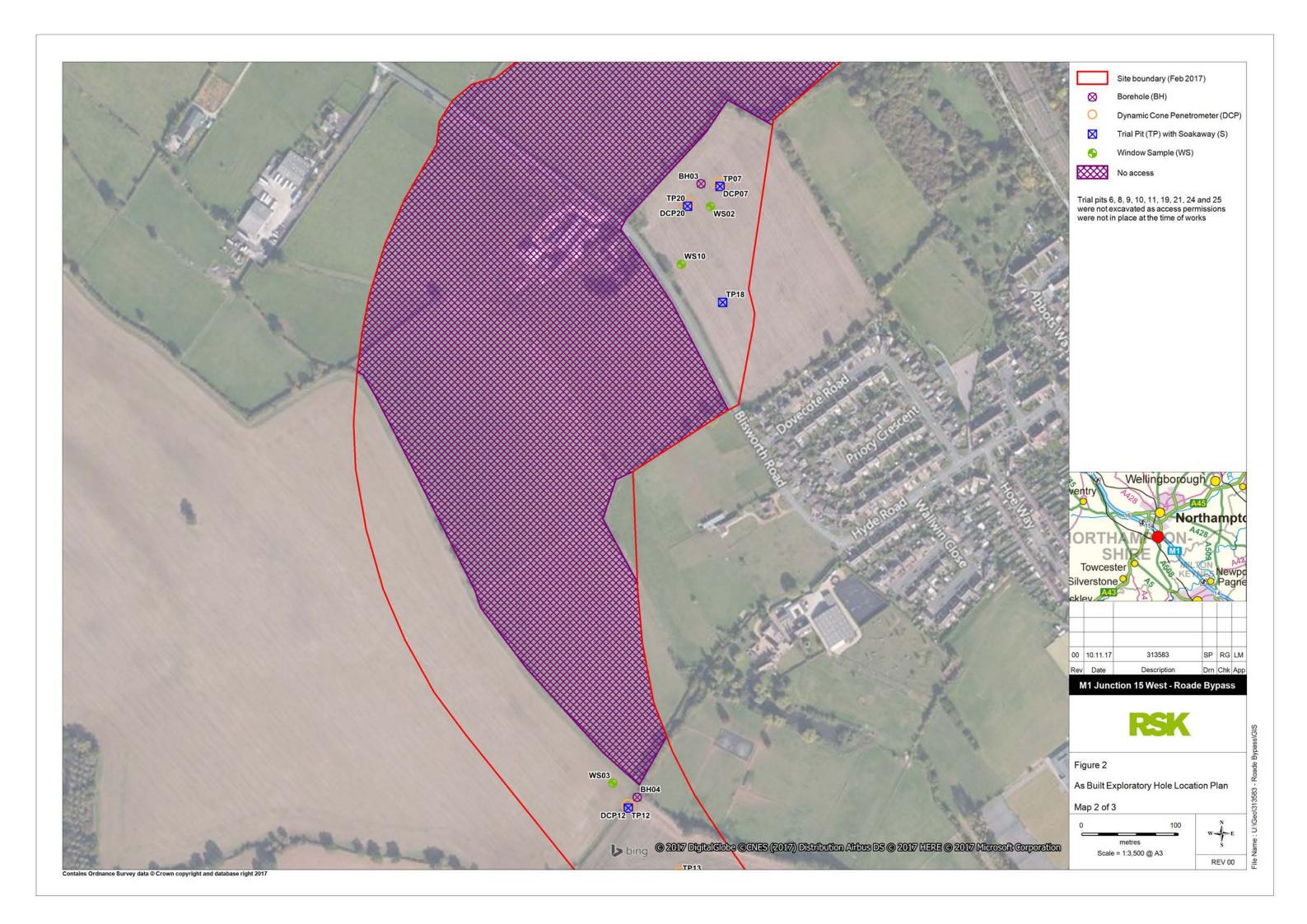
Groundwater levels and soil gas concentrations do not appear to present any unacceptable risk to the proposed scheme.

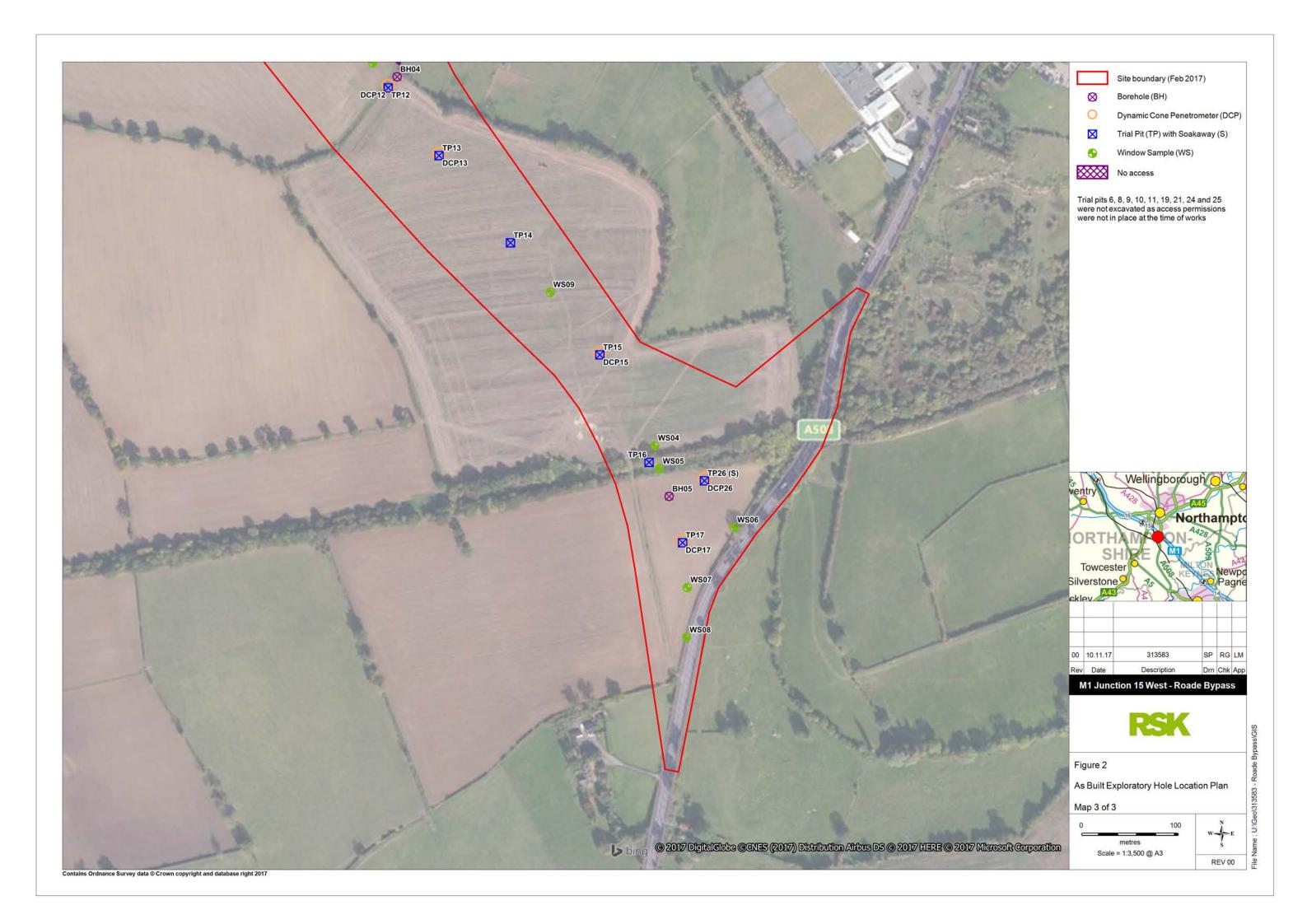
The soils underlying the site were anticipated to include naturally elevated levels of sulphates (gypsum) and ground concrete mix will be designed to accommodate these risks. The assessment is presented with Section 7.6 has indicated a classification of DS4 and AC4

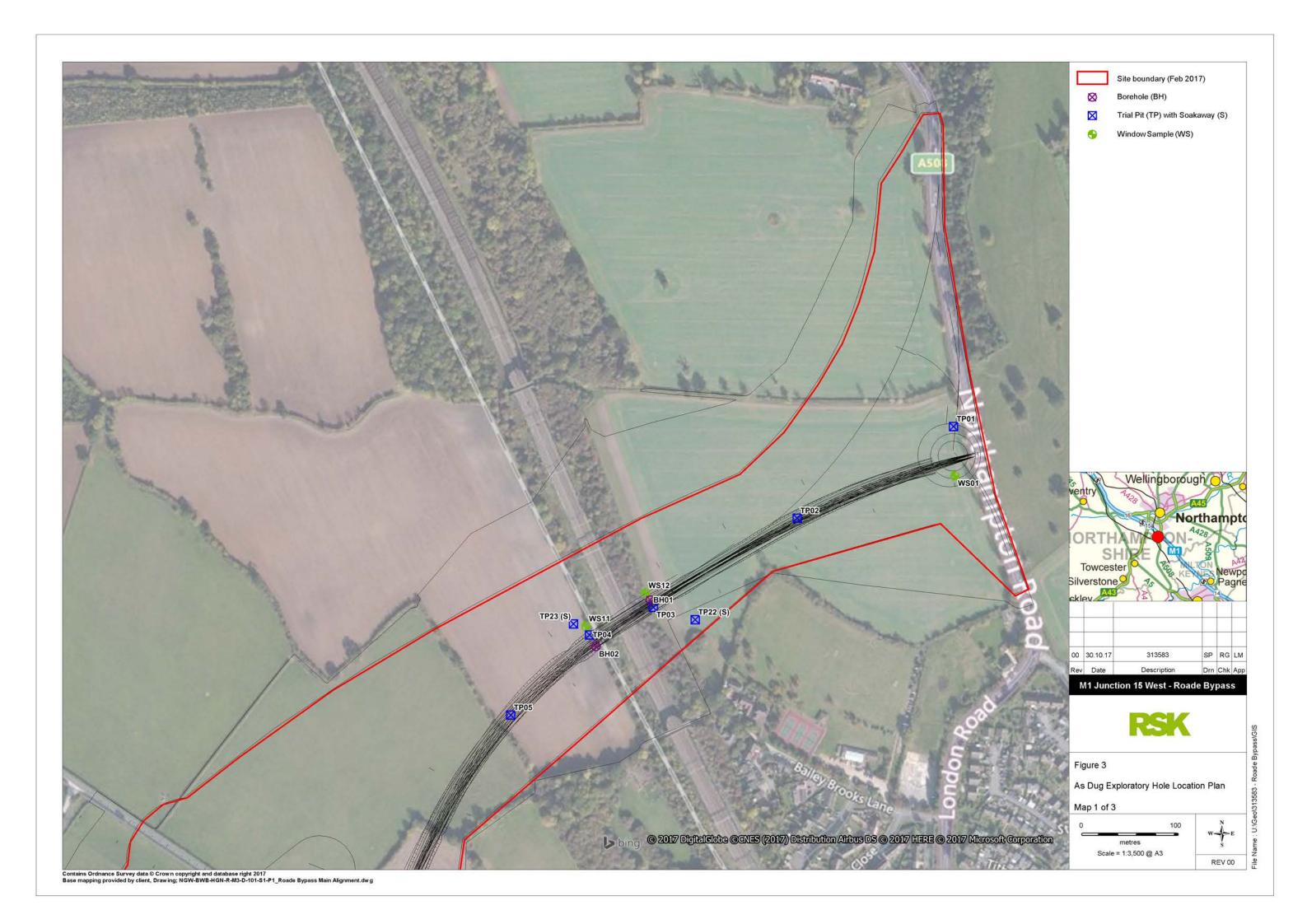
11 RECOMMENDATIONS

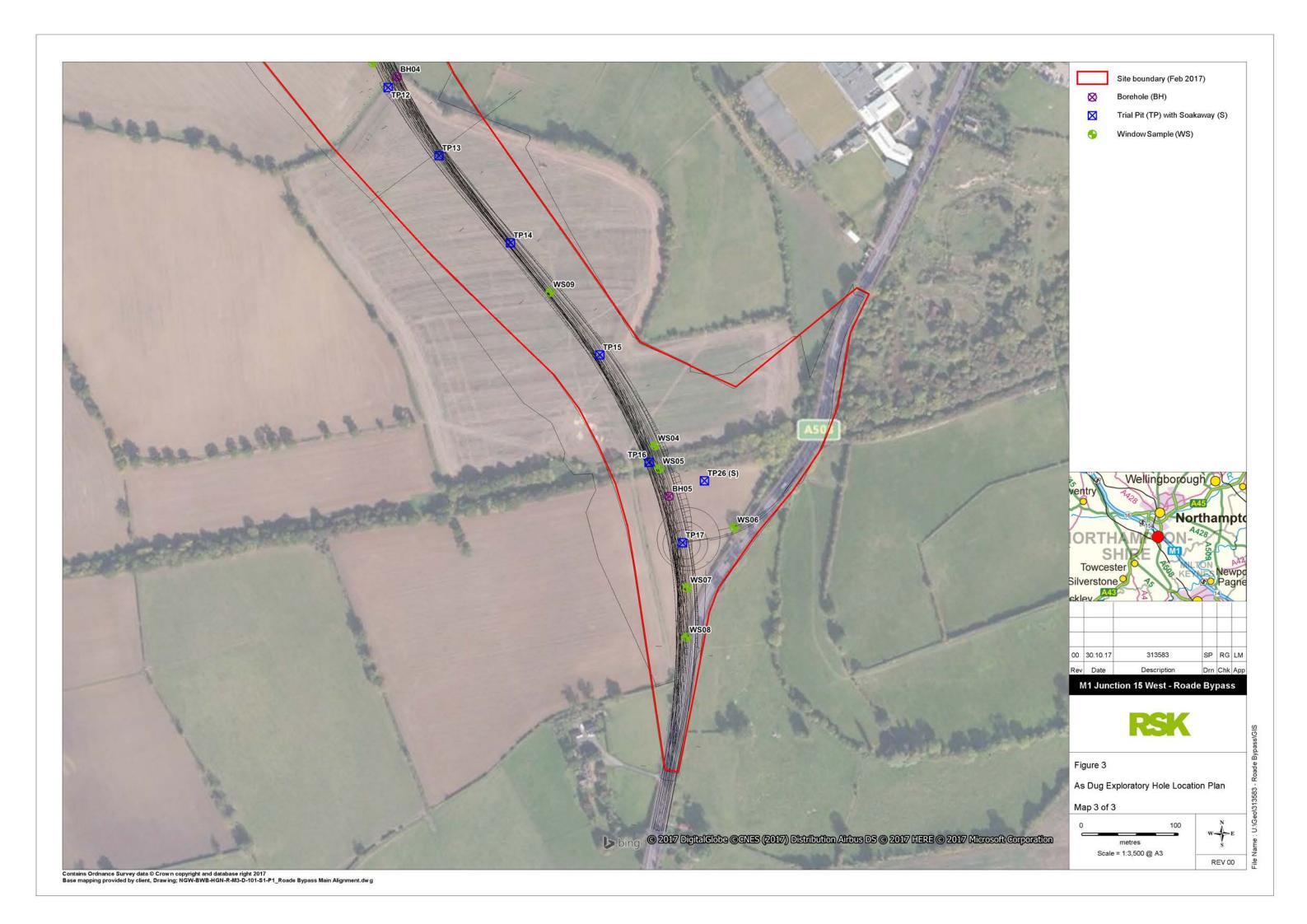
11.1 General recommendations

Some of the key recommendations are summarised below. Many of the technical or advice recommendations have not been included below. The whole of the report should be read to identify all recommendations and advice.


- It is recommended that the findings of the Contaminated Land Risk Assessment are confirmed and agreed with the regulatory authorities.
- It is recommended that at detailed design stage (Post DCO) a site wide Earthworks Specification is prepared which should include testing frequency requirements and performance criteria for the various elements of the scheme design and may well require on site compaction trials to be undertaken to inform the specification.
- At detailed design stage it is recommended that cutting slope stability assessments are carried out to refine the design.
- At detailed design stage it is recommended that embankment design geometries should be checked for slope stability and settlement. However it should be understood that the stability of an embankment will be a function of its geometry, the materials with which it is built, the degree of compaction applied, speed of construction and the foundation strata and underlying groundwater table on to which it is formed. This information will be required to feed into the earthworks specification.
- Drainage will need to be designed with care due to the poor drainage infiltration of the underlying shallow soils.
- In ground concrete should be designed to resist elevated sulphates with a minimum mix design of <u>DS-4 AC-4</u> to allow for the potential for naturally occurring sulphates within the underlying strata.




FIGURES



APPENDIX A SERVICE CONSTRAINTS

- 1. This report and the site investigation carried out in connection with the report (together the "Services") were compiled and carried out by RSK Environment Limited (RSK) for Roxhill Developments Limited in accordance with the terms of a contract between RSK and the "client", dated 8th November 2016. The Services were performed by RSK with the skill and care ordinarily exercised by a reasonable environmental consultant at the time the Services were performed. Further, and in particular, the Services were performed by RSK taking into account the limits of the scope of works required by the client, the time scale involved and the resources, including financial and manpower resources, agreed between RSK and the client.
- 2. Other than that expressly contained in paragraph 1 above, RSK provides no other representation or warranty whether express or implied, in relation to the Services.
- 3. Unless otherwise agreed the Services were performed by RSK exclusively for the purposes of the client. RSK is not aware of any interest of or reliance by any party other than the client in or on the Services. Unless expressly provided in writing, RSK does not authorise, consent or condone any party other than the client relying upon the Services. Should this report or any part of this report, or otherwise details of the Services or any part of the Services be made known to any such party, and such party relies thereon that party does so wholly at its own and sole risk and RSK disclaims any liability to such parties. Any such party would be well advised to seek independent advice from a competent environmental consultant and/or lawyer.
- 4. It is RSK's understanding that this report is to be used for the purpose described in the introduction to the report. That purpose was a significant factor in determining the scope and level of the Services. Should the purpose for which the report is used, or the proposed use of the site change, this report may no longer be valid and any further use of or reliance upon the report in those circumstances by the client without RSK 's review and advice shall be at the client's sole and own risk. Should RSK be requested to review the report after the date hereof, RSK shall be entitled to additional payment at the then existing rates or such other terms as agreed between RSK and the client.
- 5. The passage of time may result in changes in site conditions, regulatory or other legal provisions, technology or economic conditions which could render the report inaccurate or unreliable. The information and conclusions contained in this report should not be relied upon in the future without the written advice of RSK. In the absence of such written advice of RSK, reliance on the report in the future shall be at the client's own and sole risk. Should RSK be requested to review the report in the future, RSK shall be entitled to additional payment at the then existing rate or such other terms as may be agreed between RSK and the client.
- 6. The observations and conclusions described in this report are based solely upon the Services which were provided pursuant to the agreement between the client and RSK. RSK has not performed any observations, investigations, studies or testing not specifically set out or required by the contract between the client and RSK. RSK is not liable for the existence of any condition, the discovery of which would require performance of services not otherwise contained in the Services. For the avoidance of doubt, unless otherwise expressly referred to in the introduction to this report, RSK did not seek to evaluate the presence on or off the site of asbestos, electromagnetic fields, lead paint, heavy metals, radon gas or other radioactive or hazardous materials.
- 7. The Services are based upon RSK's observations of existing physical conditions at the Site gained from a walk-over survey of the site together with RSK's interpretation of information including documentation, obtained from third parties and from the client on the history and usage of the site. The Services are also based on information and/or analysis provided by independent testing and information services or laboratories upon which RSK was reasonably entitled to rely. The Services clearly are limited by the accuracy of the information, including documentation, reviewed by RSK and the observations possible at the time of the walk-over survey. Further RSK was not authorised and did not attempt to independently verify the accuracy or completeness of information, documentation or materials received from the client or third parties, including laboratories and information services, during the performance of the Services. RSK is not liable for any inaccurate information or conclusions, the discovery of which inaccuracies required the doing of any act including the gathering of any information which was not reasonably available to RSK and including the doing of any independent investigation of the information provided to RSK save as otherwise provided in the terms of the contract between the client and RSK.
- 8. The phase II or intrusive environmental site investigation aspects of the Services is a limited sampling of the site at pre-determined borehole and soil vapour locations based on the operational configuration of the site. The conclusions given in this report are based on information gathered at the specific test locations and can only be extrapolated to an undefined limited area around those locations. The extent of the limited area depends on the soil and groundwater conditions, together with the position of any current structures and underground facilities and natural and other activities on site. In addition chemical analysis was carried out for a limited number of parameters [as stipulated in the contract between the client and RSK] [based on an understanding of the available operational and historical information,] and it should not be inferred that other chemical species are not present.
- 9. Any site drawing(s) provided in this report is (are) not meant to be an accurate base plan, but is (are) used to present the general relative locations of features on, and surrounding, the site.

APPENDIX B SUMMARY OF LEGISLATION AND POLICY RELATING TO CONTAMINATED LAND

Part IIA of the Environmental Protection Act 1990 (EPA) and its associated Contaminated Land Regulations 2000 (SI 2000/227), which came into force in England on 1 April 2000, formed the basis for the current regulatory framework and the statutory regime for the identification and remediation of contaminated land. Part IIA of the EPA 1990 defines contaminated land as 'any land which appears to the Local Authority in whose area it is situated to be in such a condition by reason of substances in, on or under the land, that significant harm is being caused, or that there is significant possibility of significant harm being caused, or that pollution of controlled waters is being or is likely to be caused'. Controlled waters are considered to include all groundwater, inland waters and estuaries.

In August 2006, the Contaminated Land (England) Regulations 2006 (SI 2006/1380) were implemented, which extended the statutory regime to include Part IIA of the EPA as originally introduced on 1 April 2000, together with changes intended chiefly to address land that is contaminated by virtue of radioactivity. These have been replaced subsequently by the Contaminated Land (England) (Amendment) Regulations 2012, which now exclude land that is contaminated by virtue of radioactivity.

The intention of Part IIA of the EPA is to deal with contaminated land issues that are considered to cause significant harm on land that is not undergoing development (see Environmental Protection Act 1990: Part 2A Contaminated Land Statutory Guidance, April 2012). This document replaces Annex III of Defra Circular 01/2006, published in September 2006 (the remainder of this document is now obsolete).

Water Framework Directive (WFD)

The Water Framework Directive 2000/60/EC is designed to:

- enhance the status and prevent further deterioration of aquatic ecosystems and associated wetlands that depend on the aquatic ecosystems
- promote the sustainable use of water
- reduce pollution of water, especially by 'priority' and 'priority hazardous' substances
- ensure progressive reduction of groundwater pollution.

The WFD requires a management plan for each river basin be developed every six years.

Groundwater Directive (GWD)

The 1980 Groundwater Directive 80/68/EEC and the 2006 Groundwater Daughter Directive 2006/118/EC of the WFD are the main European legislation in place to protect groundwater. The 1980 Directive is due to be repealed in December 2013. The European legislation has been transposed into national legislation by regulations and directions to the Environment Agency.

Environmental Permitting Regulations (EPR)

The Environmental Permitting (England and Wales) Regulations 2010 provide a single regulatory framework that streamlines and integrates waste management licensing, pollution prevention and control, water discharge consenting, groundwater authorisations, and radioactive substances regulation. Schedule 22, paragraph 6 of EPR 2010 states: 'the regulator must, in exercising its relevant functions, take all necessary measures - (a) to prevent the input of any hazardous substance to groundwater; and (b) to limit the input of non-hazardous pollutants to groundwater so as to ensure that such inputs do not cause pollution of groundwater.'

Water Resources Act (WRA)

The Water Resources Act 1991 (Amendment) (England and Wales) Regulations 2009 updated the Water Resources Act 1991, which introduced the offence of causing or knowingly permitting pollution of controlled waters. The Act provides the Environment Agency with powers to implement remediation necessary to protect controlled waters and recover all reasonable costs of doing so.

Priority Substances Directive (PSD)

The Priority Substances Directive 2008/105/EC is a 'Daughter' Directive of the WFD, which sets out a priority list of substances posing a threat to or via the aquatic environment. The PSD establishes environmental quality standards for priority substances, which have been set at concentrations that are safe for the aquatic environment and for human health. In addition, there is a further aim of reducing (or eliminating) pollution of surface water (rivers, lakes, estuaries and coastal waters) by pollutants on the list. The WFD requires that countries establish a list of dangerous substances that are being discharged and EQS for them. In England and Wales, this list is provided in the River Basin Districts Typology, Standards and Groundwater threshold values (Water Framework Directive) (England and Wales) Directions 2010. In order to achieve the objectives of the WFD, classification schemes are used to describe where the water environment is of good quality and where it may require improvement.

Planning Policy

Contaminated land is often dealt with through planning because of land redevelopment. This approach was documented in Planning Policy Statement: Planning and Pollution Control PPS23, which states that it remains the responsibility of the landowner and developer to identify land affected by contamination and carry out sufficient remediation to render the land suitable for use. PPS23 was withdrawn early in 2012 and has been replaced by much reduced guidance within the National Planning Policy Framework (NPPF).

The new framework has only limited guidance on contaminated land, as follows:

- "planning policies and decisions should also ensure that:
 - the site is suitable for its new use taking account of ground conditions and land instability, including from natural hazards or former activities such as mining, pollution arising from previous uses and any proposals for mitigation including land remediation or impacts on the natural environment arising from that remediation;

- after remediation, as a minimum, land should not be capable of being determined as contaminated land under Part IIA of the Environmental Protection Act 1990; and
- o adequate site investigation information, prepared by a competent person, is presented".

APPENDIX C SITE PHOTOGRAPHS

APPENDIX C EXPLORATORY HOLE PHOTOGRAPHS

Photo no.

1

11/09/2017

Date:

Exploratory hole number:

Trial pit 1

Description:

Trial Pit 1 excavated to a maximum depth of 3.80m.

Photo No.

2

11/09/2017

Date:

Exploratory hole number:

Trial pit 1

Description:

Trial pit 1 stockpiled material

Photo No. Date: 11/09/2017

Exploratory hole number:

Trial pit 2

Description:

Photo No. Date:

4

11/09/2017

Exploratory hole number:

Trial pit 2

Description:

Trial pit 2 stockpiled material

Photo no. Date:

5

11/09/2017

Exploratory hole number:

Trial pit 3

Description:

Trial pit 3 excavated to a maximum depth of 4.00m.

Photo No. Date:

6

11/09/2017

Exploratory hole number:

Trial pit 3

Description:

Trial pit 3 stockpiled material

Photo No. Date:

7

11/09/2017

Exploratory hole number:

Trial pit 4

Description:

Trial pit 4 excavated to a maximum depth of 3.80m.

Photo No. Date:

8

11/09/2017

Exploratory hole number:

Trial pit 4

Description:

Trial pit 3 stockpiled material

Photo no. Date:

9

11/09/2017

Exploratory hole number:

Trial pit 5

Description:

Trial pit 4 excavated to a maximum depth of 3.20m.

Photo No. Date:

10

11/09/2017

Exploratory hole number:

Trial pit 5

Description:

Trial pit 5 stockpiled material

Photo No. Date:

11

08/09/2017

Exploratory hole number:

Trial pit 7

Description:

Trial pit 7 excavated to a maximum depth of 3.80m.

Photo No.

Date:

12

08/09/2017

Exploratory hole number:

Trial pit 7

Description:

Trial pit 7 stockpiled material

Photo no. Date:

13

08/09/2017

Exploratory hole number:

Trial pit 12

Description:

Trial pit 7 excavated to a maximum depth of 3.60m.

Photo No. Date:

14

08/09/2017

Exploratory hole number:

Trial pit 12

Description:

Trial pit 12 stockpiled material.

Photo No. Date:

15

08/09/2017

Exploratory hole number:

Trial pit 13

Description:

Trial pit 7 excavated to a maximum depth of 3.60m.

Photo No.

Date:

16

08/09/2017

Exploratory hole number:

Trial pit 13

Description:

Trial pit 13 stockpiled material

Photo no.

07/09/2017

Date:

Exploratory hole number:

Trial pit 14

Description:

Trial pit 14 excavated to a maximum depth of 3.60m.

Photo No. Date:

18

07/09/2017

Exploratory hole number:

Trial pit 14

Description:

Trial pit 14 stockpiled material

Photo No. Date:

19

07/09/2017

Exploratory hole number:

Trial pit 15

Description:

Trial pit 15 excavated to a maximum depth of 2.50m.

Photo No. Date:

20

07/09/2012

Exploratory hole number:

Trial pit 15

Description:

Trial pit 15 stockpiled material

Photo no. Date:

21

07/09/2017

Exploratory hole number:

Trial pit 16

Description:

Trial pit 15 excavated to a maximum depth of 1.80m.

Photo No. Date:

22

07/09/2017

Exploratory hole number:

Trial pit 16

Description:

Trial pit 16 stockpiled material

Photo No. Date:

23

07/09/2017

Exploratory hole number:

Trial pit 16A

Description:

Trial pit 16 excavated to a maximum depth of 0.50m.

Photo No.

24

07/09/2017

Date:

Exploratory hole number:

Trial pit 17

Description:

Trial pit 17 excavated to a maximum depth of 4.50m.

Photo no. Date:

07/09/2017

25

Exploratory hole number:

Trial pit 17

Description:

Trial pit 17 stockpiled material.

Photo No. Date:

26

08/09/2017

Exploratory hole number:

Trial pit 18

Description:

Trial pit 18 excavated to a maximum depth of 3.60m.

27

08/09/2017

Exploratory hole number:

Trial pit 18

Description:

Trial pit 18 stockpiled material.

Photo No. Date:

28

08/09/2017

Exploratory hole number:

Trial pit 20

Description:

Trial pit 20 excavated to a maximum depth of 3.80m.

29

08/09/2017

Exploratory hole number:

Trial pit 20

Description:

Trial pit 20 stockpiled material.

Photo No. Date:

30

13/09/2017

Exploratory hole number:

Trial pit 23

Description:

Trial pit 23 excavated to a maximum depth of 3.00m and soakaway test undertaken.

, ito. | Dat

31

13/09/2017

Exploratory hole number:

Trial pit 23

Description:

Trial pit 23 stockpiled material.

Photo No. Date:

32

13/09/2017

Exploratory hole number:

Trial pit 26

Description:

Trial pit 26 excavated to a maximum depth of 3.00m

Photo no.

Date:

33

13/09/2017

Exploratory hole number:

Trial pit 26

Description:

Trial pit 26 stockpiled material

Photo No. Date:

34

06/09/2017

Exploratory hole number:

Window Sample 01

Description:

Window sample 01 drilled to 2.50m.

35

06/09/2017

Exploratory hole number:

Window Sample 02

Description:

Window sample 02 drilled to 5.45m.

Photo No.

Date:

36

06/09/2017

Exploratory hole number:

Window Sample 03

Description:

Window sample 03 drilled to 3.00m.

37

05/09/2017

Exploratory hole number:

Window Sample 04

Description:

Window sample 04 drilled to 4.90m.

Photo No. Date:

38

05/09/2017

Exploratory hole number:

Window Sample 05

Description:

Window sample 05 drilled to 4.45m.

39

05/09/2017

Exploratory hole number:

Window Sample 06

Description:

Window sample 06 drilled to 5.45m.

Photo No.

Date:

40

05/09/2017

Exploratory hole number:

Window Sample 07

Description:

Window sample 07 drilled to 4.45m.

41

05/09/2017

Exploratory hole number:

Window Sample 08

Description:

Window sample 08 drilled to 5.45m.

Photo No. Date:

42

05/09/2017

Exploratory hole number:

Window Sample 09

Description:

Window sample 09 drilled to 3.00m.

43

06/09/2017

Exploratory hole number:

Window Sample 10

Description:

Window sample 10 drilled to 4.45m

Photo No.

Date:

44

06/09/2017

Exploratory hole number:

Window Sample 11

Description:

Window sample 11 drilled to 4.80m.

Photo no.

Date:

45

06/09/2017

Exploratory hole number:

Window Sample 12

Description:

Window sample 12 drilled to 5.00m.

Photo No.

Date:

46

19/09/2017

Exploratory hole number:

Borehole 01

Description:

Borehole 01 dynamic sampling run from 1.00m to 9.00m

47

21/09/2017

Exploratory hole number:

Borehole 01

Description:

Borehole 01, box 1 of 7, 9.00m to 12.00m

Photo No.

Date:

48

21/09/2017

Exploratory hole number:

Borehole 01

Description:

Borehole 01, box 2 of 7, 12.00m to 15.00m

49

21/09/2017

Exploratory hole number:

Borehole 01

Description:

Borehole 01, box 3 of 7, 15.00m to 18.00m.

Photo No. Date:

50

21/09/2017

Exploratory hole number:

Borehole 01

Description:

Borehole 01, box 4 of 7, 18.00m to 21.00m.

51

21/09/2017

Exploratory hole number:

Borehole 01

Description:

Borehole 01, box 5 of 7, 21.00m to 24.00m.

Photo No. Date:

52

21/09/2017

Exploratory hole number:

Borehole 01

Description:

Borehole 01, box 6 of 7, 24.00m to 27.00m

53

21/09/2017

Exploratory hole number:

Borehole 01

Description:

Borehole 01, box 7 of 7, 27.00m to 30.00m

Photo No. Date:

54

15/09/2017

Exploratory hole number:

Borehole 02

Description:

Borehole 02 dynamic sampling run from 1.00m to 8.50m.

55

15/09/2017

Exploratory hole number:

Borehole 02

Description:

Borehole 02, Box 1 of 8, 8.50m to 11.50m.

Photo No. Date:

56

15/09/2017

Exploratory hole number:

Borehole 02

Description:

Borehole 02, Box 2 of 8, 11.50m to 14.50m.

57

18/09/2017

Exploratory hole number:

Borehole 02

Description:

Borehole 02, Box 2 of 8, 14.50m to 17.50m.

Photo No. Date:

58

18/09/2017

Exploratory hole number:

Borehole 02

Description:

Borehole 02, Box 4 of 8, 17.50m to 20.00m.

59

18/09/2017

Exploratory hole number:

Borehole 02

Description:

Borehole 02, Box 5 of 8, 20.00m to 22.50m.

Photo No.

Date:

60

18/09/2017

Exploratory hole number:

Borehole 02

Description:

Borehole 02, Box 6 of 8, 22.50m to 24.00m.

61

19/09/2017

Exploratory hole number:

Borehole 02

Description:

Borehole 02, Box 7 of 8, 24.00m to 27.00m.

Photo No. Date:

62

19/09/2017

Exploratory hole number:

Borehole 02

Description:

Borehole 02, Box 8 of 8, 27.00m to 30.00m.

63

14/09/20147

Exploratory hole number:

Borehole 03

Description:

Borehole 03, Box 1 of 4, 4.50m to 7.50m.

Photo No.

Date:

64

14/09/2017

Exploratory hole number:

Borehole 03

Description:

Borehole 03, Box 2 of 4, 7.50m to 10.50m.

65

14/09/2017

Exploratory hole number:

Borehole 03

Description:

Borehole 03, Box 3 of 4, 10.50m to 13.50m.

Photo No. Date:

66

14/09/2017

Exploratory hole number:

Borehole 03

Description:

Borehole 03, Box 4 of 4, 13.50m to 15.00m.

67

12/09/2017

Exploratory hole number:

Borehole 04

Description:

Borehole 04, Box 1 of 7, 4.00m to 6.50m.

Photo no. Date:

68

12/09/2017

Exploratory hole number:

Borehole 04

Description:

Borehole 04, Box 2 of 7, 6.50m to 9.50m.

69

12/09/2017

Exploratory hole number:

Borehole 04

Description:

Borehole 04, Box 3 of 7, 9.50m to 11.00m

Photo No. Date:

70

12/09/2017

Exploratory hole number:

Borehole 04

Description:

Borehole 04, Box 4 of 7, 11.00m to 14.00m.

71

12/09/2017

Exploratory hole number:

Borehole 04

Description:

Borehole 04, Box 5 of 7, 14.00m to 15.50m.

Photo no.

Date:

72

12/09/2017

Exploratory hole number:

Borehole 04

Description:

Borehole 04, Box 6 of 7, 18.50m to 20.00m.

73

12/09/2017

Exploratory hole number:

Borehole 04

Description:

Borehole 04, Box 7 of 7, 18.50m to 20.00m.

Photo No. Date:

74

12/09/2017

Exploratory hole number:

Borehole 05

Description:

Borehole 05, 1.20m to 4.00m.

75

12/09/2017

Exploratory hole number:

Borehole 04

Description:

Borehole 04, Box 5 of 7, 14.00m to 15.50m.

Photo no. Date:

76

12/09/2017

Exploratory hole number:

Borehole 04

Description:

Borehole 04, Box 6 of 7, 18.50m to 20.00m.

77

12/09/2017

Exploratory hole number:

Borehole 04

Description:

Borehole 04, Box 7 of 7, 18.50m to 20.00m.

Photo No. Date:

78

12/09/2017

Exploratory hole number:

Borehole 05

Description:

Borehole 05, 1.20m to 4.00m.

79

12/09/2017

Exploratory hole number:

Borehole 05

Description:

Borehole 05, Box 1 of 5, 4.00m to 7.00m.

Photo no. Date:

80

12/09/2017

Exploratory hole number:

Borehole 05

Description:

Borehole 05, Box 2 of 5, 7.00m to 10.00m.

81

12/09/2017

Exploratory hole number:

Borehole 05

Description:

Borehole 05, Box 3 of 5, 11.50m to 14.00m

Photo No. Date:

82

12/09/2017

Exploratory hole number:

Borehole 05

Description:

Borehole 05, Box 4 of 5, 14.00m to 17.00m.

83

12/09/2017

Exploratory hole number:

Borehole 05

Description:

Borehole 05, Box 5 of 5, 17.00m to 20.00m.

APPENDIX D RISK ASSESSMENT METHODOLOGY

CLR11 outlines the framework to be followed for risk assessment in the UK. The framework is designed to be consistent with UK legislation and policies including planning. Under CLR11, three stages of risk assessment exist: preliminary, generic quantitative and detailed quantitative. An outline conceptual model should be formed at the preliminary risk assessment stage that collates all the existing information pertaining to a site in text, tabular or diagrammatic form. The outline conceptual model identifies potentially complete (termed possible) pollutant linkages (contaminant–pathway–receptor) and is used as the basis for the design of the site investigation. The outline conceptual model is updated as further information becomes available, for example as a result of the site investigation.

Production of a conceptual model requires an assessment of risk to be made. Risk is a combination of the likelihood of an event occurring and the magnitude of its consequences. Therefore, both the likelihood and the consequences of an event must be taken into account when assessing risk. RSK has adopted guidance provided in CIRIA C552 for use in the production of conceptual models.

The likelihood of an event can be classified on a four-point system using the following terms and definitions based on CIRIA C552:

- highly likely: the event appears very likely in the short term and almost inevitable over the long term or there is evidence at the receptor of harm or pollution
- likely: it is probable that an event will occur or circumstances are such that the event is not inevitable, but possible in the short term and likely over the long term
- low likelihood: circumstances are possible under which an event could occur, but it is not certain even in the long term that an event would occur and it is less likely in the short term
- unlikely: circumstances are such that it is improbable the event would occur even in the long term.

The severity can be classified using a similar system also based on CIRIA C552. The terms and definitions relating to severity are:

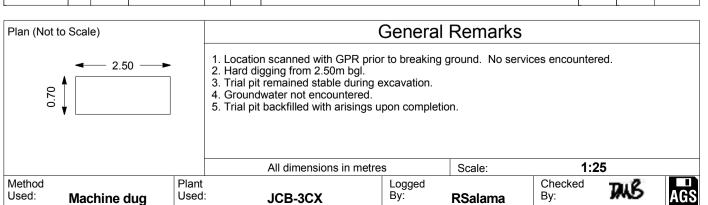
- severe: short term (acute) risk to human health likely to result in 'significant harm' as defined by the Environment Protection Act 1990, Part IIA. Short-term risk of pollution of sensitive water resources. Catastrophic damage to buildings or property. Short-term risk to an ecosystem or organism forming part of that ecosystem (note definition of ecosystem in 'Draft Circular on Contaminated Land', DETR 2000)
- medium: chronic damage to human health ('significant harm' as defined in 'Draft Circular on Contaminated Land', DETR 2000), pollution of sensitive water resources, significant change in an ecosystem or organism forming part of that ecosystem
- mild: pollution of non-sensitive water resources. Significant damage to crops, buildings, structures and services ('significant harm' as defined in 'Draft Circular on Contaminated Land', DETR 2000). Damage to sensitive buildings, structures or the environment

minor: harm, not necessarily significant, but that could result in financial loss or expenditure
to resolve. Non-permanent human health effects easily prevented by use of personal
protective clothing. Easily repairable damage to buildings, structures and services.

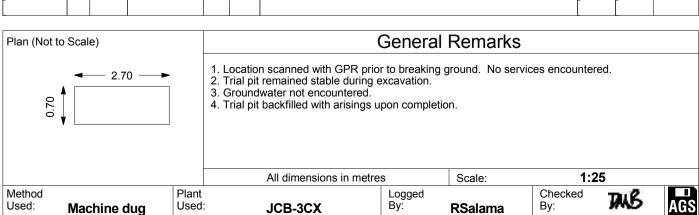
Once the probability of an event occurring and its consequences have been classified, a risk category can be assigned according to the table below.

		Consequences									
		Severe	Medium	Mild	Minor						
	Highly likely	Very high	High	Moderate	Moderate/low						
Probability	Likely	High	Moderate	Moderate/low	Low						
Prob	Low likelihood	Moderate	Moderate/low	Low	Very low						
	Unlikely	Moderate/low	Low	Very low	Very low						

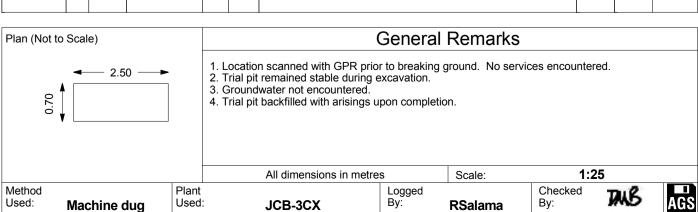
Definitions of these risk categories are as follows together with an assessment of the further work that may be required:


- Very high: there is a high probability that severe harm could occur or there is evidence that severe harm is currently happening. This risk, if realised, could result in substantial liability; urgent investigation and remediation are likely to be required.
- High: harm is likely to occur. Realisation of the risk is likely to present a substantial liability.
 Urgent investigation is required. Remedial works may be necessary in the short term and are likely over the long term.
- Moderate: it is possible that harm could arise, but it is unlikely that the harm would be severe
 and it is more likely that the harm would be relatively mild. Investigation is normally required
 to clarify the risk and determine the liability. Some remedial works may be required in the
 longer term.
- Low: it is possible that harm could occur, but it is likely that if realised this harm would at worst normally be mild.
- Very low: there is a low possibility that harm could occur and if realised the harm is unlikely to be severe.

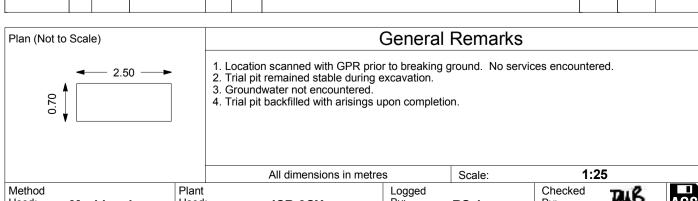
APPENDIX E EXPLORATORY HOLE RECORDS


Contract:						Client:			Trial Pi	t:			
		Road	de Bypas	SS			Roxhill				TP01		
Contract Re	ef:		Sta	rt: 1	11.09.17	Ground Level:	National Grid Co-ord	dinate:	Sheet:				
313583 End:			d: 1	11.09.17	121.28	E:475469.5 N	N:252463.3		1	of 1			
Samples and In-situ Tests					Water		Description of Strata			Depth (Thick			
Depth	No	Туре	Results		> %				Reduced Level	ness)	Legend		
0.20 0.20		ES PID	0.0ppm			fine to coarse. Grav coarse of quartzite, fli (TOPSOIL)							
0.50		V	c _u =64/52/6			gravelly CLAY. Sand	Firm orangish brown light grey silty slightly s gravelly CLAY. Sand is fine to coarse. Gravel rounded fine to coarse limestone, chalk, flint and	vel is angular to	- -	-			
0.70 0.70 0.80		D PID B	0.0ppm			(GENOINE TIEE)			-	(1.10)			
0.80		PID	0.0ppm						-	- -			
1.70 1.70 1.80		D PID B	0.0ppm)ppm			nd brown silty slighty s e rounded limestone gra		119.88	1.40	* · · · · · · · · · · · · · · · · · · ·		
1.80		PID	0.0ppm						-	-	X X X X X X X X X X X X X X X X X X X		
2.80		D				at 2.60m large lin	nestone boulders.		-	- (2.40) - -	X X X X X X X X X X X X X X X X X X X		
2.80		PID	0.0ppm			at 3.00m pocket (of gravelly sand.		_	-	× × × × × × × × × × × × × × × × × × ×		
		1				at 3.20m becomii	ng dark grey.		- -	-	* ·× ·>		
3.40 3.40		D PID	0.0ppm						-	- 2.00	× × × × × × × × × × × × × × × × × × ×		
-						(BLISWORTH LIMES	ong to strong LIMESTO TONE FORMATION) 3.8m depth due to rockt		117.48 - - -	3.80	× × ×		

GINT_LIBRARY_V8_06.GLB LibVersion: v8_06_018 PηVersion: v8_06 - Core+Logs - 002 | Log TRIAL PIT LOG - A4P | 313583 - ROADE BYPASS.GPJ - v8_06. RSK Environment Ltd, Abbey Park, Humber Road, Coventry, CV3 4AQ. Tel: 02476 505600, Fax: 02476 501417, Web: www.rsk.co.uk, | 10/11/17 - 14:48 | DM/1 |


							Γ.							
Contract:		D					Client:	Deceletii	Trial Pi	it:	TDOO			
Contract Re		Koad	de Bypa		44.00	147	Ground Level:	Roxhill National Grid Co-ordinate:	Sheet:		TP02			
	'. 3135	:02			11.09				Sneet.	4	. 1			
				nd:	11.09		120.60	E:475303.7 N:252359.8	 0		of 1			
Samp	oles a	nd In-si	tu Tests		Water	Backfill	Des	scription of Strata	Reduced Level	Depth (Thick	Material Graphic			
Depth	No	Туре	Resul	ts	Š	Ва		•	Red	ness)	Legend			
0.20 0.20		ES PID	0.0ppr	m			fine to coarse. Gravel coarse of quartzite, flint (TOPSOIL)		120.30	(0.30)	1/ · 3 · 1/ · 3 · 1/ · 3 · 1/ · 3 · 1/ · 3 · 1/ · 3 · 1/ · 3 · 3 · 1/ · 3 · 3 · 1/ · 3 · 3 · 3 · 3 · 3 · 3 · 3 · 3 · 3 ·			
0.50 0.50		D PID	0.0ppi	m			Firm orangish brown I gravelly CLAY. Sand is rounded fine to coarse li (GLACIAL TILL)		(1.30)					
0.70		V	c _u =48/62	2/66										
1.00		B PID	0.0ррг	m			at 1.00m occasiona	at 1.00m occasional angular limestone cobbles.						
1.50 1.50		D PID	0.0ррі	m			Firm to stiff light grey ar rare to occasional fine ro (GLACIAL TILL)	119.00	1.60					
2.00		B PID	0.0ррг	m					-	- - -	x _ x _ x _ x _ x _ x _ x _ x _ x _ x _			
2.50 2.50		D PID	0.0ррг	m					-	- (2.00) -	x _ x			
3.00		D PID	0.0ррі	m			at 3.00m dark grey.		-	-	x			
3.50 3.50		D PID	0.0ррі	m			Strong dark grey and gro \(BLISWORTH LIMESTO Trial pit terminated at 3.	ONE FORMATION)	117.00		X X			
-									-	- - -				

GINT_LIBRARY_V8_06.GLB LibVersion: v8_06_018 PηVersion: v8_06 - Core+Logs - 002 | Log TRIAL PIT LOG - A4P | 313583 - ROADE BYPASS.GPJ - v8_06. RSK Environment Ltd, Abbey Park, Humber Road, Coventry, CV3 4AQ. Tel: 02476 505600, Fax: 02476 501417, Web: www.rsk.co.uk, | 10/11/17 - 14:48 | DM/1 |


Contract:						Client:		Trial Pi	t·	
Contract.	F	Road	de Bypass			Oliciti.	Roxhill	Indiri		TP03
Contract Re				11.09.	17	Ground Level:	National Grid Co-ordinate:	Sheet:		
313583 End:			11.09.	17	119.66 E:475144.8 N:252257.5			1	of 1	
Samp	les an	d In-si	tu Tests	ter				ced	Depth	
Depth	No 7	Туре	Results	Water	Backfill		cription of Strata	Reduced Level	(Thick ness)	Graphic Legend
0.30 0.30 0.50 0.50 0.60 0.70 0.70 1.00		ES PID B PID D PID:	0.0ppm 0.0ppm c _u =98/110/102 0.0ppm 0.0ppm			fine to coarse. Gravel coarse quartzite, flint and (POSSIBLE MADE GROFITM to stiff light grey sandy slightly gravelly C cobbles. Sand is fine subrounded fine to co Boulders are >250mm	DUND) and dark greyish brown silty slightly LAY with rare limestone boulders and to coarse. Gravel is subangular to barse quartzite, flint and limestone. and are rounded. Cobbles are and are subangular to subrounded.	119.46	- (2.00)	
2.50 2.60 2.60 3.50 3.50		V D PID D PID	c _u =112/102/108 c _u =60/72/56 0.0ppm			slightly gravelly ČLÁY. subangular to subroundand flint with occasion Cobbles are 150mm to		117.46	- - - - - - - - - - - - - - - - - - -	
4.00		D PID	0.0ppm			Trial pit terminated at 4.0	00m depth.	- - -	- - -	

GINT_LIBRARY_V8_06.GLB LibVersion: v8_06_018 PηVersion: v8_06 - Core+Logs - 002 | Log TRIAL PIT LOG - A4P | 313583 - ROADE BYPASS.GPJ - v8_06. RSK Environment Ltd, Abbey Park, Humber Road, Coventry, CV3 4AQ. Tel: 02476 505600, Fax: 02476 501417, Web: www.rsk.co.uk, | 10/11/17 - 14:48 | DM/1 |

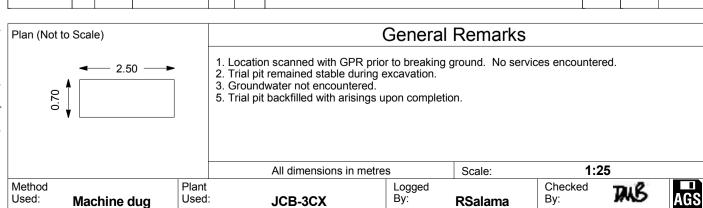
Contract:								Client:					Trial Pi	+-	
Contract.		Road	de By	nass				Cilent.		Roxh	ill		IIIaiFi	ι.	TP04
Contract Re	f:	itout	uc Dy	Start:		9.17	Groun	d Level:			rid Co-ordinate	e:	Sheet:		11 04
313583 End:			11.0			121.42	2		070.3 N:2			1	of 1		
	oles and In-situ Tests				Water	Backfill		Description of Strata						Depth (Thick	Graphic
Depth	No	Туре	Res	ults >		m ××××××							Reduced	ness)	Legend
-		5 0					sligh cobb subr	tly gravelly bles. Sand ounded fine	CLAY is fine to coars	with rare o coarse.	orown silty sli limestone bo Gravel is su flint and limes GROUND)	bulders and bangular to	-	- - -	
0.50 0.50		ES PID	0.0p	opm									-	- -	
0.70 - 0.70 -		D PID	0.0p	opm									-	(2.00)	
1.00		B PID	0.0р	opm									-	-(2.00) - - - - -	
1.70 - 1.70		D PID	0.0р	opm									119.42	2.00	
2.00		B PID	0.0р	opm			sligh suba and	tly gravelly ingular to s	/ ČLÁY. subrounde casional l	Sand is find to co	brown silty sl ne to coarse parse limestor obbles and bo	. Gravel is ne, quartzite	-	-	
2.50 2.50		D PID	0.0р	opm									-	(1.10)	
-							Sand quar (GLA	d is fine to tzite and lim ACIAL TILL	coarse. nestone.)	Gravel is s	y slightly gra subangular fin	velly CLAY. e to coarse	118.32	(0.90)	
-							Trial	pit terminat	ted at 4.0	0m depth.			-	-	

GINT_LIBRARY_V8_06.GLB LibVersion: v8_06_018 PηVersion: v8_06 - Core+Logs - 002 | Log TRIAL PIT LOG - A4P | 313583 - ROADE BYPASS.GPJ - v8_06. RSK Environment Ltd, Abbey Park, Humber Road, Coventry, CV3 4AQ. Tel: 02476 505600, Fax: 02476 501417, Web: www.rsk.co.uk, | 10/11/17 - 14:48 | DM/1 |

Used: Machine dug

Used:

JCB-3CX


Logged By:

Ву: **RSalama**

MB

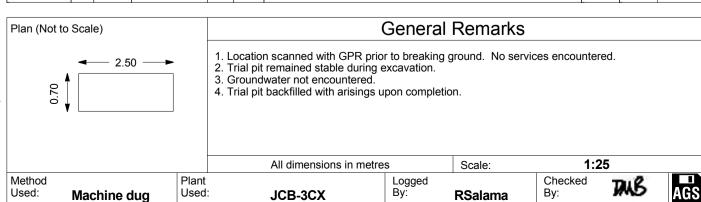
Contract:				Client:		Trial P	it:	
-	Road	de Bypass			Roxhill			TP05
Contract Ref:		Start:	11.09.17	Ground Level:	National Grid Co-ordinate:	Sheet:		
313	3583	End:	11.09.17	120.61	E:474984.3 N:252133.6		1	of 1
Samples	and In-si	tu Tests	Water Backfill	Do	escription of Strata	Reduced Level	Depth (Thick	Materia Graphi
Depth No	Type	Results	W			Red	ness)	
0.20 0.20	ES PID	0.0ppm		fine to coarse. Grave coarse of quartzite, flin (TOPSOIL)		120.31	(0.30)	\(\frac{1}{1}\); \(\frac{1}\); \(\frac{1}{1}\); \(\frac{1}{1}\); \(\frac{1}{1}\); \(\frac{1}\); \(\frac{1}{1}\); \(\frac{1}{1}\); \(\frac{1}{1}\); \(\frac{1}{1}\); \(\frac{1}{1}\); \(\frac{1}{1}\); \(\frac{1}{1}\); \(\frac{1}{1}\); \(\frac{1}\); \(\frac{1}\)
0.50 0.50	D V	c _u =38/46/50		gravelly CLAY. Sand	light grey silty slightly sandy slightly is fine to coarse. Gravel is angular to limestone, flint and quartzite.	-	-	
0.50	PID	0.0ppm				-	-	
1.00	B PID	0.0ppm				-	-	
1.50	D PID	0.0ppm				- - -	(2.90)	
2.00	B PID	0.0ppm				- - -	- - -	
2.50 2.50	D PID	0.0ppm				-	-	
3.00 3.00	D PID	0.0ppm		Van strang arout IME	CTONE	117.41	3.20	
-				Very strong grey LIME (BLISWORTH LIMES) Trial pit terminated at 3	ONE FORMATION)	- - - - - - - -	- - - - - - -	

							IRIAL			.UG
Contract:		_				Client:	B 1.'''	Trial P	it:	
Camtra et Da	r .	Road	de Bypass		47	Crayrad Layrah	Roxhill National Grid Co-ordinate:	Chasti		TP07
Contract Re		502		08.09.		Ground Level:		Sheet:		. 4
	313		End:	08.09.		119.86	E:474875.3 N:251916.9	 0		of 1
	_		itu Tests	Water	Backfill	Des	cription of Strata	Reduced Level	Depth (Thick	Graphic
Depth	No	Туре	Results		ъ ××××			Re	ness)	Legend
0.10		ES				to coarse. Gravel is sub	y slightly gravelly CLAY. Sand is fine angular to subrounded fine to coarse	119.66	0.20	17. 27.17. 77.1 2
0.10		PID	0.0ppm			quartzite and flint.	y mottled orangish brown silty slightly	1113.00	0.20	
-						sandy slightly gravelly C	LAY. Sand is fine to coarse. Gravel is	-	-	
0.50		D				(GLACIAL TILL)	d fine to coarse limestone.	-	-	
0.50		PID	0.0ppm							
0.80		V	c _u =48/56/52					-	-	
-			l d					_		<u> </u>
								-	-	<u> </u>
								-	-	
								-		
1.50		D				at 1.40m large limes	tone boulder.	-	-	
1.50		PID	0.0ppm					_	-	
-								-	[·
-						at 1.80m grey in cold	Dur.	-	-	
_									(3.60)	· · · · ·
-								-	-	
-						at 2.30m dark grey.		-	-	
						, and a				
2.50 2.50		D PID	0.0ppm					-	-	<u> </u>
								-	-	<u>·</u> ······
								-	[
-								-	-	
									t	<u> </u>
								-	-	
								-	-	
3.50 3.50		D PID	0.0ppm						ļ	
J.UU -		רוט	υ.υρριτι					110.00	2 00	
-					****	Trial pit terminated at 3.8	Om depth due to machine lifting.	116.06	3.80	<u>+ ' '-</u>
-									[
-									}	
									t	
-								f	[
	1	ĺ				I		1	1	

2.50

General Remarks

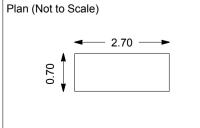
- Location scanned with GPR prior to breaking ground. No services encountered.
 Hard digging from 3.40m bgl.
 Trial pit remained stable during excavation.


- 4. Groundwater not encountered.

5. Trial pit backfilled with arisings upon completion.

		All dimensions in metre	S	Scale:	1:2	25
lethod sed: Machine dug	Plant Used	JCB-3CX	Logged By:	RSalama	Checked By:	TAV

Contract:								Client:					Trial Pi	t:	
		Road	de By	pass						Roxhi	ill				TP12
Contract Re	ef:			Start:	08.09	9.17	Groun	d Level:		National Gr	id Co-ordinat	e:	Sheet:		
	3135	583		End:	08.09	9.17		115.32		E:4747	'83.5 N:2	51216.1		1	of 1
	_		tu Tests		Water	Backfill			Des	cription of S	trata		Reduced Level	Depth (Thick	Graphic
Depth	No	Туре	Res	sults	\$	m ××××××	9 _						Re	ness)	Legend
0.20 0.20		ES PID	0.0r	mac			to co flint, (TOF	oarse. Grave quartzite ar PSOIL)	el is suband chalk.	angular to su	velly CLAY. ubrounded fir	ne to coarse	115.02	(0.30)	1/2 · 24 · 1/2 · 24 ·
							CLA' subr	Y. Sand is	fine to to coars	coarse. C e quartzite, l	tly sandy slig Gravel is su imestone and	bangular to	_	- - (0.70) - -	
0.90 0.90		D PID	0.0p	opm			Oran	agich brown	oliahtly.	cilty cliabth	/ clayey slig	htly gravally	114.32	1.00	
1.00 1.00 1.10 1.10		B PID D PID	0.0p 0.0p	•			SAN	D. SAnd i	s fine to to coars	o coarse. C e of quartzite	Gravel is su		114.02	(0.30)	
		D PID	0.0p	opm			Grav and	∕el is subar	ngular to	rounded fin	Sand is fine te to coarse		-	- - - - -	
0.00		0												- - (2.00) - - - - -	
3.00 3.00		B PID	0.0p	opm							s, > 300mm.	ckhood	112.02	3.30	0.00
-							iiidl	preterminal	ou at J.J	om deput Ul	. assumed 10	onnodu.		-	



Contract:							Client:			Trial Pi	t:	
		Road	de By	pass				Roxhill				TP13
Contract Re	ef:			Start:	08.09	.17	Fround Level:	National Grid Co-ordin	ate:	Sheet:		
;	313	583		End:	08.09	.17	115.93	E:474841.1 N:	251141.4		1	of 1
Sam	ples a	and In-si	itu Tests		Water	Backfill		December of Otroto		Reduced Level	Depth	Material Graphic
Depth	No	Туре	Res	ults	Ma	Вас		Description of Strata		Redu Le	(Thick ness)	Legend
-						\\\\\\\\\\	to coarse. Gravel is flint and quartzite. (TOPSOIL)	sandy slightly gravelly CLAY s subangular to subrounded	fine to coarse		0.20	1/ · \\ 1/ · \
-						*****	CLAY. Sand is fi	h brown silty slightly sandy s ne to coarse. Gravel is s coarse quartzite, limestone a	subangular to	- :	- - -	
0.70 - 0.70 - 0.80 _0.80		D PID B PID	0.0p 0.0p	-						- 	- - -(1.60)	
- - -							hetween 1.40m	and 1.70m gravelly clay.		-	- - -	
-										- - 114.13	- - 1.80	
1.90 -1.90		B PID	0.0p	ppm			Very soft orangish to (GLACIAL TILL)	orown silty CLAY.		- :	- - (0.70)	xx
- - -							Firm brown eilty o	lightly sandy slightly gravel		113.43	2.50	x _ x
- - 2.80 - 2.80		B PID	0.0p	ppm			occasional limestor is subangular to s	e boulders. Sand is fine to cubrounded fine to coarse are of 20x15x20cm limestor	coarse. Gravel ironstone and	- :	- - - (0.90)	
_2.90 _2.90		D PID	0.0p	ppm						-	=`	
3.40 - 3.40		D PID	0.0p	pm			Extremely weak light (BLISWORTH LIME	t greyish brown silty LIMEST ESTONE FORMATION)		<u>112.53</u> - -	3.40 - - - (0.60)	
-										- - 111.93	- -	
- -							Trial pit terminated	at 4.00m depth.			- - -	
_										-	-	

Method

Used:

Machine dug

Plant

Used:

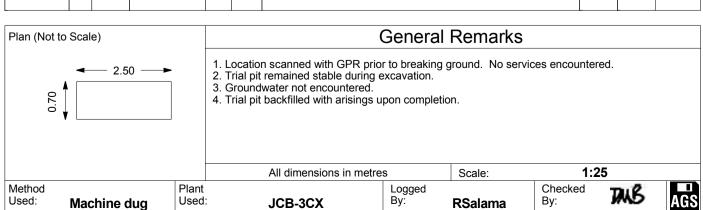
General Remarks

- Location scanned with GPR prior to breaking ground. No services encountered.
 Hard digging from 3.40m bgl.
 Trial pit remained stable during excavation.

- 4. Groundwater not encountered.

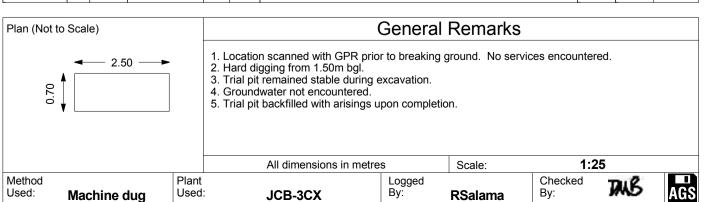
JCB-3CX

5. Trial pit backfilled with arisings upon completion.

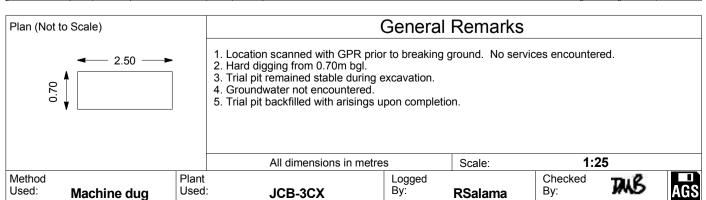

All dimensions in metres		Scale:	1:2	5
	Logged		Chacked	_

RSalama

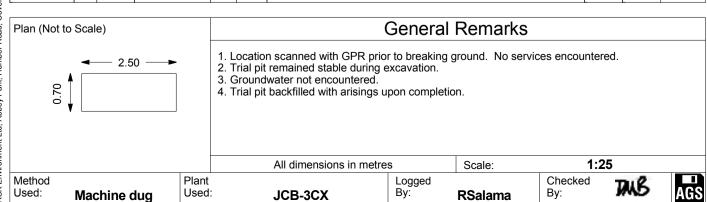
Ву:



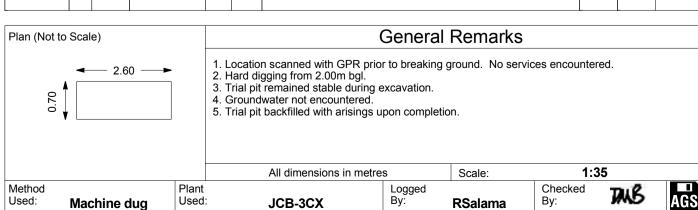
Contract:						Client:			Trial Pi	t:	
		Road	de Bypas	5			Roxhill				TP14
Contract Re	ef:		Start	07.09.17	7 Groun	d Level:	National Grid Co-ordina	ate:	Sheet:		
;	3135	583	End:	07.09.17	7	114.78	E:474922.9 N:	251044.6		1	of 1
			tu Tests	Water		De	escription of Strata		Reduced Level	Depth (Thick	Materia Graphic
Depth	No	Туре	Results	> <u>m</u>		n cilty clightly car	ndy slightly gravelly CLAY	Cand is fine	- R	ness)	Legend
0.20		ES PID	0.0ppm		to co of qu cobb (TOF	parse. Gravel is su uartzite and flint volles. Cobbles are 6 PSOIL)	ubangular to subrounded with occasional quartzite a ex4x6cm.	fine to coarse and limestone	- 114.48 -	(0.30) 0.30	
0.50 0.50 0.60 0.60		B PID D PID	0.0ppm 0.0ppm		Sand fine t (GLA	d is fine to coarse to coarse of quartz ACIAL TILL) . at 0.30m frequ	Ity slightly sandy slightly go. Gravel is subangular to ite with occasional limesto ent limestone boulders.	o subrounded one cobbles.	- - -	-	
					30x2	20x20cm.			- - - -	- - - -	
1.50 1.50 1.60 1.60		B PID D PID	0.0ppm 0.0ppm						- - - -	- (2.40) - - - - -	
2.50 2.50 2.60 2.60		B PID D PID	0.0ppm 0.0ppm		Verv	stiff dark grevi	sh brown silty slightly s	sandy slightly	- - - - 112.08	2.70	
_		טויו	о.орри		grave roun (WE Medi reco	elly CLAY. Sand is ded fine to coarse ATHERED BLISW ium strong to str vered as cobbles a	is fine to coarse. Gravel is of limestone and mudstor ORTH LIMESTONE FOR ong dark greyish brown and gravel.	subangular to ne lithorelicts. RMATION)	- - <u>111.78</u> -	3.00	
3.50 3.50		B PID	0.0ppm				ONĚ FORMATION)		- - - 111.18	3.60	
3.60 3.60		D PID	0.0ppm		Trial	pit terminated at 3	.60m depth.		- - -	- - -	
									- - -	-	



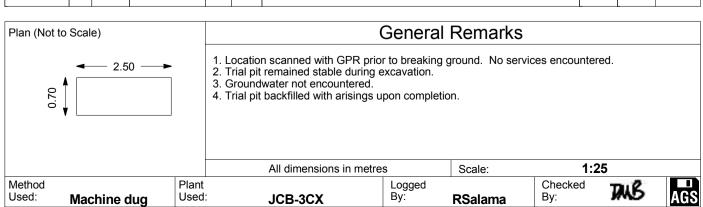
Contract:							Client:			Trial Pi	it:	
		Road	de Byp	pass				Roxhill				TP15
Contract Re	f:			Start:	07.09	9.17	Ground Level:	National Grid Co-ordinate:		Sheet:		
	3135	583		End:	07.09	9.17	110.97	E:475025.6 N:250920	0.1		1	of 1
Samı	oles a	ınd In-si	tu Tests		Water	Backfill	De	scription of Strata		Reduced Level	Depth (Thick	Material Graphic
Depth	No	Туре	Res	ults	Š	Ba		•		Red	ness)	Legend
0.20	1	ES PID	0.0p	ppm			to coarse. Gravel is su of quartzite and flint limestone cobbles. Cob (TOPSOIL)	dy slightly gravelly CLAY. Sand is bangular to subrounded fine to co with occasional quartzite, flint bles are 6x4x6cm. ty slightly sandy slightly gravelly C	arse and	110.67	0.30	\(\frac{1}{2}\frac{1}{
0.50		V	c _u =42/	50/58			Sand is fine to coarse fine to coarse of quartzi	. Gravel is subangular to subrou te with occasional limestone cobb	nded les.	-	_	
0.70 0.70	4	D PID	0.0p	pm			(WEATHERED BLISW	ORTH LIMESTONE FORMATION	1)		(0.90)	
1.00 1.00	3	B PID	0.0p	pm			Firm to skiff wellowish	land the state of		109.77	1.20	× ·×
1.50 1.50 1.50 1.50	5 7	D ES PID	0.0p				slightly gravelly CLAY w	brown and grey silty slighty s vith frequent limestone cobbles. ORTH LIMESTONE FORMATION	,	-	(1.10)	X X X X X X X X X X X X X X X X X X X
2.00		PID	0.0p	pm						108.67	2.30	× ·× ·× ·× ·× ·× ·× ·× ·× ·× ·× ·× ·× ·×
2.40 2.40 2.50		D PID B	0.0p	opm			Extremely weak yellowi LIMESTONE. (BLISWORTH LIMEST	sh brown slightly clayey slightly s	andy	-	- - - - -	
										-	(1.70)	
-							Trial pit terminated at 4.	00m depth.		106.97	4.00	



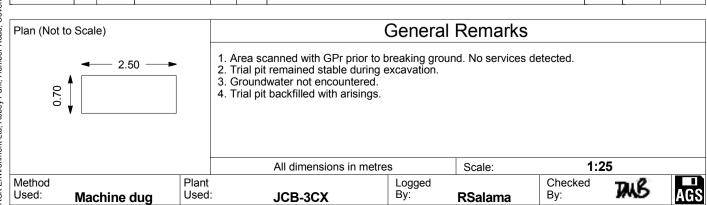
Cambre -4:							Olient			IRIAL			
Contract:		Road	de Bypa	99			Client:		Roxhill		Trial P	IT:	TP16
Contract Re	ef:	rtout			07.09.1	7 Gro	und Level:		National Grid Co-	ordinate:	Sheet:		11 10
;	3135	583	En		07.09.1		104.51		E:475082.9	N:250808.0		1	of 1
Sam	ples a	ınd In-si	tu Tests		Water			Desc	cription of Strata		Reduced	Depth (Thick	Materia Graphic
Depth	No	Туре	Results	3	B &						Rec	ness)	Legeno
0.10 0.10		ES PID	0.0ppm			to of (T	coarse. Gravel is quartzite, flint, ch OPSOIL)	s suba	angular to subrour nd limestone.	CLAY. Sand is fine nded fine to coarse	104.21	(0.30)	70.77
0.60		В				fre lim of	equent limestone nestone. Gravel is limestone.	cobb s sub	les. Cobbles are	gravelly CLAY with 7x6x6cm and are nded fine to coarse	103.81	0.70	*
0.60		PID	0.0ppm			Ve de		mottle	ed orangish browr	a silty slightly sandy	-	-	× · · · · · · · · · · · · · · · · · · ·
											- - -	(1.10)	x- x x x- x x
1.60 1.60 1.70		B PID D	0.0ppm								102.71	1.80	x - x - x - x - x - x - x - x - x - x -
1.70		PID	0.0ppm			Tri	. from 1.80m bed ial pit terminated a	comin at 1.8	g light bluish grey. 0m depth.		-	-	
											-	-	
											-	-	
											-	-	
											_	_	
											-	-	
											-	-	
											_	-	
											-	-	
											-	-	



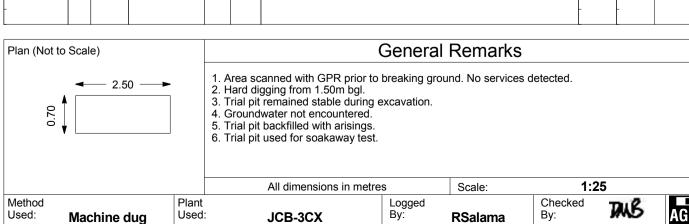
Contract:								Client:					Trial Pi	+-	
Contract.		Road	de By	nace				Cilent.		Roxi	hill		IIIai Fi		P16A
Contract Re	f·	Noac	ле Бу	Start:		9 17	Grour	d Level:			Grid Co-ordina	ate.	Sheet:		FIUA
		583		End:	08.0		Orour	104.5	:1		5082.9 N:2		Onco.	1	of 1
			4 T 4-					10-1.0	′ •	L.+10	7002.0 11.2		<u> </u>		
Depth	No	nd In-si Type	I	sults	Water	Backfill			Des	cription of	Strata		Reduced	Depth (Thick ness)	
0.20		ES					MAE (MA	DE GROU DE GROU	ND: Grass JND/RAIL\	over LIME VAY BALLA	STONE COB AST)	BLES.	-	- -(0.40)	
0.20		PID	0.0p	opm									104.11		
0.50		ES	0.0				†∖(GLA	ACIAL TIL	.L)		slightly gravel	ly CLAY. /	104.01	0.50	*o · × · c
0.50		PID	0.0p	opm			Irial	pit termin	ated at 0.5	oum depth.			-	-	
-													-	-	
_													-	-	
_													-	_	
														_	
_													-	-	
_													-	_	
_													-	-	
-													-	-	
-													-	-	
														_	
-													-	-	
_													-	_	
_													-	_	
_													-	-	
-													-	<u>-</u>	
_													-	_	
													-	-	
_													-	-	
-													-	-	
-													-	-	



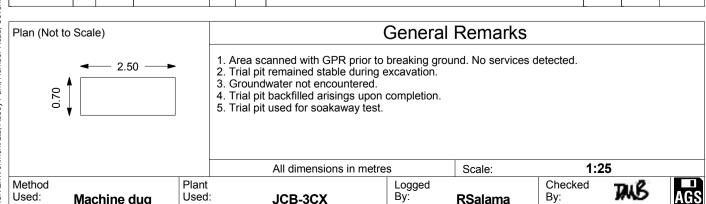
Roade Bypass Roxhill TP17 Contract Ref: Start: 07.09.17 Ground Level: National Grid Co-ordinate: Sheet: 313583 End: 07.09.17 102.16 E:475121.9 N:250710.3 1 of 1										KIAL			
Start O7.09.17 Ground Level: National Grid Co-ordinate: E:475121.9 N:250710.3 Tof 1 1 1 1 1 1 1 1 1 1	Contract:	_	2000	da Duna				Client:	Dovbill		Trial Pi	t:	TD47
Samples and In-situ Tests	Contract Ref		Koac			07 09	17	Ground Level:		ate.	Sheet:		IP11
Samples and In-situ Tests Depth No Type Results Page Results Page Results Page			33								Oncou	1	of 1
Brown silty slightly sandy slightly gravelly CLAY. Sand is fine to coarse. Gravel is subangular to subrounded fine to coarse of quartzite, flint, chalk and limestone. 10.86											ced	Depth	Materia
0.20 BS PID 0.0ppm PID	Depth 1	No T	Гуре	Results	S	Wat	Back	D	escription of Strata		Redu		
D D D D D D D D D D				0.0ppm	ı			to coarse. Gravel is so of quartzite, flint, chalk (TOPSOIL)	ubangular to subrounded t and limestone.	fine to coarse	-	0.30	
1.30	0.50 0.60 0.60		PID D PID	0.0ppm	ı			frequent limestone co limestone. Gravel is s of limestone.	obbles. Cobbles are 7x6x ubangular to subrounded f	6cm and are fine to coarse	101.16		
1.50				ŭ				Very stiff grey mottled Sand is fine to coarse.	d orangish brown slightly	sandy CLAY.	-	-	
2.50 2.60 PID D 0.0ppm at 2.90m becoming light grey. at 2.90m becoming light grey. 3.50 3.50 3.60 D D D 0.0ppm at 3.70m becoming grey in colour. 97.96 4.20 Soft dark bluish grey mottled orangish brown silty slightly sandy CLAY with frequent subangular to angular fine to coarse mudstone lithorelicts. (RUTLAND FORMATION)	1.50 1.60		PID D						subangular to angular fi	ne to coarse	- - - - -	- - - - -	
3.50 3.60 3.60 D PID 0.0ppm 0.0ppm 0.0ppm at 3.70m becoming grey in colour. 97.96 4.20 Soft dark bluish grey mottled orangish brown silty slightly sandy CLAY with frequent subangular to angular fine to coarse mudstone lithorelicts. (RUTLAND FORMATION)	2.50 2.60		PID D					at 2.90m becomin	g light grey.		-	- - (3.20) - - - - -	
Soft dark bluish grey mottled orangish brown silty slightly sandy CLAY with frequent subangular to angular fine to coarse mudstone lithorelicts. (RUTLAND FORMATION)	3.50 3.60		PID D					at 3.70m becomin	g grey in colour.		- - - - - -	-	
	4.40		PID	0.0ppm	ı			sandy CLAY with free coarse mudstone litho (RUTLAND FORMATI	equent subangular to an relicts. ON)		-	_	
	-										- - -	- - -	



Samples	Road 3583 es and In-si No Type ES PID	End:	08.09.17 08.09.17 Backill Maler	117.37 De Brown silty slightly san	Roxhill National Grid Co-ordinate: E:474880.5 N:251786.9 scription of Strata dy slightly gravelly CLAY. Sand is fine bangular to subrounded fine to coarse	Sheet:	Depth (Thick ness)	of 1 Material Graphic Legend
Samples Depth N 0.20 0.20 0.60	es and In-si	itu Tests Results	08.09.17	De Brown silty slightly san to coarse. Gravel is su quartzite and flint.	E:474880.5 N:251786.9 scription of Strata dy slightly gravelly CLAY. Sand is fine	Reduced	Depth (Thick	Material Graphic
Samples Depth N 0.20 0.20 0.60	es and In-si	itu Tests Results		Brown silty slightly san to coarse. Gravel is su quartzite and flint.	scription of Strata		Depth (Thick	Material Graphic
Depth N 0.20 0.20 0.60	No Type ES PID	Results	Water	Brown silty slightly san to coarse. Gravel is su quartzite and flint.	dy slightly gravelly CLAY. Sand is fine		(Thick	Graphic
0.20	PID	0.0ppm		to coarse. Gravel is su	dy slightly gravelly CLAY. Sand is fine bangular to subrounded fine to coarse			
0.60		2.044				/-	0.20	1/2 · 24 · 1/2 · 1
0.70	B PID	c _u =56/68/62 0.0ppm		sandy slightly gravelly (ey mottled orangish brown silty slightly CLAY. Sand is fine to coarse. Gravel is led fine to coarse limestone.	-	- - -	
- 0.80 _0.80	D PID	0.0ppm		limestone. Cobbles are	and 1.70m boulders and cobbles of 100mm to 250mm and are subangular ers are >300mm and are rounded to	†	- - (1.80) - - - -	
1.70 - 1.70	D PID	0.0ppm				115.37	2.00	
2.00 2.10 2.10	V D PID	c _u =74/68/83 0.0ppm		Firm grey silty CLAY. (GLACIAL TILL)		-	-	X X X
2.70	V	c _u =114/126/120		at 2.50m stiff.		-	(1.10)	x x x x x x x x x x x x x x x x x x x
- - - - - - 3.20 - - 3.20	D PID	0.0ppm		Very stiff grey mottled CLAY. (GLACIAL TILL) at 3.30m greyish gr	d orangish brown silty slightly sandy een.	-	(0.40)	
-				Strong greyish green LI (BLISWORTH LIMEST Trial pit terminated at 3.	MESTONE. ONE FORMATION)	113.87	3.50	<u> </u>
- - - -						-	- - -	



								T			1111/12			
Contract:		_						Client:				Trial P	it:	
		Road	de By							Roxhill				TP20
Contract Re				Start:			Groun	id Level:		National Grid		Sheet:	_	_
3	313	583		End:	08.0	9.17		119.1	11	E:47483	9.3 N:251894.4		1	of 1
Samp	oles a	and In-si	itu Tests		Water	Backfill			D		4-	Reduced Level	Depth	Material Graphic
Depth	No	Туре	Resi	ults	⊗	Вас			Des	scription of Stra	та	Zedi Le	(Thick ness)	Legend
-							to co	oarse. Gr	avel is sub	ly slightly grave pangular to subr	lly CLAY. Sand is fine ounded fine to coarse	118.91	0.20	17.34.14. 74.17
0.50		D PID	0.0р	pm			quartzite and flint. Firm brown and light grey mottled orangish brown silty slightly sandy slightly gravelly CLAY. Sand is fine to coarse. Gravel is subangular to subrounded fine to coarse limestone. (GLACIAL TILL)							
1.50		D PID	0.0р	pm				at 2.00m	becoming	dark grey.		- - - - - -	-(3.60)	
2.50		D PID	0.0р	pm								- - - - - -	-	
3.50		D PID	0.0р	pm			Trial	pit termii	nated at 3.8	30m depth.		115.31	3.80	



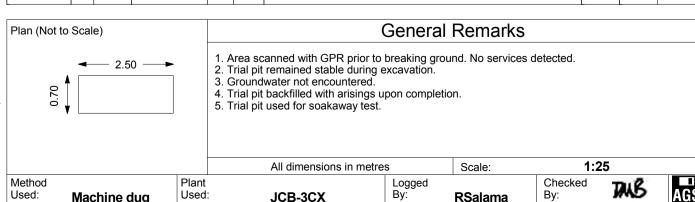
Contract:						Client:		Trial P	it:	
		Road	de Bypas				Roxhill			TP22
Contract R			Start	13.09.1		nd Level:	National Grid Co-ordinate:	Sheet:		
	313	583	End:	13.09.1	7	117.11	E:475190.4 N:252244.0		1	of 1
San	nples a	and In-si	tu Tests	Water	B ack	Des	scription of Strata	Reduced	Depth (Thick	Material Graphic
Depth	No	Туре	Results	Š			•	Red	ness)	Legend
-					Sand Subr (TOI	d is fine to coarse. (ounded chalk, quart PSOIL)	slightly sandy slightly gravelly CLAY. Gravel is fine to coarse, subangular to zite, flint and limestone.	116.81	(0.30)	\(\frac{1}{2}\frac{1}{
					CLA coar lime	Y with frequent ang rse. Gravel is suba stone, flint and quar	own silty slightly sandy slightly gravelly ular limestone cobbles. Sand is fine to ngular to subrounded, fine to coarse tzite. BLE MADE GROUND)			
1.00 1.00	1	B PID	0.0ppm					- - - -	-	
_								- - - -	(2.70)	
2.00	2	B PID	0.0ppm					-	-	
3.00 3.00	3	B PID	0.0ppm					114.11	3.00	
- -								- - -	- - -	
								-	- - -	
-								-	_ - -	
								-	-	

Contract:							Client:				Trial Pi	it:	
		Road	de Bypa	ass					Roxhill			-	TP23
Contract Re					13.09.1	7 Grou	nd Level:		National Grid Co-	ordinate:	Sheet:		
	3135	83	Eı	nd:	13.09.1	7	121.20)	E:475053.4	4 N:252237.1		1	of 1
Samp	oles a	nd In-si	tu Tests		ter						Reduced Level	Depth	Material
Depth	No	Туре	Result	ts	Water			Des	cription of Strata		Redu	(Thick ness)	Graphic Legend
-						Sar sub	nd is fine to rounded cha	coarse. (alk, quart	Gravel is fine to co zite, flint and limes		120.90	(0.30)	\(\frac{1}{2}\), \(\frac{1}\), \(\frac{1}\), \(\frac{1}{2}\), \(\frac{1}{2
1.00	1	B PID	0.0ppn	n		slig fine coa	htly gravelly to coarse. rse limestor	/ CĽAÝ \ Gravel ne quartzi	vith rare limestone is subangular to	silty slightly sandy e cobbles. Sand is subrounded fine to ND)	-		
2.00	2	B PID	0.0ppn	n			. Brown in co	olour fron	n 2.00m.			(2.70)	
3.00	3	B PID	0.0ppn	m							118.20	3.00	

RSalama

JCB-3CX

GINT_LIBRARY_V8_06.GLB LibVersion: v8_06_018 PηVersion: v8_06 - Core+Logs - 002 | Log TRIAL PIT LOG - A4P | 313583 - ROADE BYPASS.GPJ - v8_06. RSK Environment Ltd, Abbey Park, Humber Road, Coventry, CV3 4AQ. Tel: 02476 505600, Fax: 02476 501417, Web: www.rsk.co.uk, | 10/11/17 - 14:48 | DM/1 |


Used:

Used:

Machine dug

Contract:						Client:		Trial P	it:	
		Road	de Bypas	8			Roxhill			TP26
Contract Re	f:			13.09	. 17 G	round Level:	National Grid Co-ordinate:	Sheet:		
3	3135	583	End:	13.09	.17	99.88	E:475145.4 N:250780.4		1	of 1
Samp	oles a	nd In-si	tu Tests	Water	Backfill	D -	- winting of Ohnoto	Reduced	Depth	Material Graphic
Depth	No	Туре	Results	N N	Вас	De	scription of Strata	Redu	(Thick ness)	Legend
-						Grass over brown silty Sand is fine to coarse fine to coarse quartzite,	99.58	(0.30)	1/ · 3·1/ · 3·1/ 1/ · 3·1/ · 3·1/	
1.00	1	В			****	Firm brown orange silty Sand is fine to coarse fine to coarse quartzite (GLACIAL TILL)	-	-	**************************************	
- 1.00 - - - - - -		PID	0.0ppm			light grey in colour t	-	(2.70)	* * * * * * * * * * * * * * * * * * *	
2.00 - 2.00 2.00	2	B PID	0.0ppm			with angular limesto	one cobbles from 2.50m	-	-	* - &
-						Soil becoming dam	p from 2.80m	-	-	×°×××××××××.
3.00 - 3.00 - - - - - - -	2	B PID	0.0ppm					96.88	3.00	

JCB-3CX

Ву:

RSalama

GINT_LIBRARY_V8_06.GLB LibVersion: v8_06_018 PηVersion: v8_06 - Core+Logs - 002 | Log TRIAL PIT LOG - A4P | 313583 - ROADE BYPASS.GPJ - v8_06. RSK Environment Ltd, Abbey Park, Humber Road, Coventry, CV3 4AQ. Tel: 02476 505600, Fax: 02476 501417, Web: www.rsk.co.uk, | 10/11/17 - 14:48 | DM/1 |

Used:

Used:

Machine dug

Contract:							Client:			Windo	w Samp	le:
	Roade	е Ву	pass	;					Roxhill			WS01
Contract Ref:				06.09.17	Gro	ound	Level	:	National Grid Co-ordinate:	Sheet:		
31	3583		End:	06.09.17			120	.71	E:475488.6 N:252412.5	5	1	of 1
Progress		Sam	ples / T	ests		<u>ن</u>	io r ⊨ ⊗			peo el	Depth	Material
Window Run	Depth	No	Туре	Results		Water	Backfill & Instru-		Description of Strata	Reduced	(Thick ness)	Graphic Legend
- - -	0.20	1	ES PID	0.0ppm				gravelly Cl		s.	0.30	
- - -	0.40	2	В					gravelly Cl	gish brown slightly sandy sligh _AY. Gravel is angular to subrounderse of chalk, quartzite and flint. TILL)	tly ed - -	- - -	
- - -	0.90	3	D			< <				-	- -	
1.20 - 2.00 (85mm dia) 100% rec	1.20-1.65	1 4	SPT(c) D	N=27		***		Becon	ning stiff from 1.20m bgl.	- - - -	(2.20)	
2.00 - 2.50 (75mm dia) 100% rec	2.00-2.45	2	SPT(c)	N=50		***		becom	ning very stiff from 2.00m.	- - - -	-	
	2.50-2.89	3	SPT(c)	N:50 for 285i	mm	4		Window sa on refusal.	ample hole terminated at 2.50m dep	118.21 th	2.50	
· -	-									-	-	
-	-									-	-	
	-									-	-	
	-									-	-	
- - -	-									-	-	
-	_									-	-	

	Drilling Pro	gress and	Water Ob	servations	3	
Date	Time	Borehole Depth (m)	Casing Depth (m)	Borehole Diameter (mm)	Water Depth (m)	
						_

General Remarks

- 1. Location scanned with GPR prior to breaking ground. No Services encountered.
- 2. Hand dug inspection pit to 1.20m bgl,
- Groundwater not encontered.
 Gas and groundwater monitoring well installed to 2.50m bgl.

1:25 All dimensions in metres Scale: Drilled

Tracked window Method Plant Used: Used: Premier 110 sampling

Logged DSUK LTD

Checked Tub **MSouthworth**

								VINDOV	A OWIN			
Contract:						Client:				Windov		
	Roade	е Ву	•					Roxhill			1	WS02
Contract Ref:			Start:	06.09.17	Gro			National Grid Co-or		Sheet:		
31	3583		End:	06.09.17		119.	35	E:474865.0	N:251894.1		1	of 2
Progress		Samp	oles / T	ests		er ill & ru- rtion				ced	Depth	Material
Window Run	Depth	No	Туре	Results		Water Backfill & Instrumentation		Description of Str	rata	Reduced Level	(Thick ness)	Graphic Legend
-	- 0.20 - 0.20 -	1	ES PID	0.0ppm			with frequangular to and quartz (TOPSOIL)	otlets. Gravel is coarse of chalk	- - 118.95	0.40	\(\frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2
-	0.50	2	D				slightly gr	oming stiff orangis avelly CLAY. Grave d fine to coarse	el is angular to	-	-	
-	0.70	4	В				quartzite. (GLACIAL		o. o.i.a.i. a.i.a	-	-	
-	1.00	3	D							-		
	1.20-1.65		SPT(c)	N=17						-	-	
1.20 - 2.00 (85mm dia) 100% rec	1.40 - - -	5	D							117.55	- - - 1 80	
	- - 2.00-2.45 - -	2	SPT(c)	N=22			slightly sar angular to quartzite a (GLACIAL		CLAY. Gravel is coarse of chalk,	-	-	
2.00 - 3.00 (75mm dia) - 100% rec	2.40 	6	D								(1.30) - - -	
- +	- 3.00-3.45 -	3	SPT(c)	N=46			Stiff dark Gravel is a	grey silty slightly angular to subrounded sandstone.	gravelly CLAY.	116.25	- 3.10	
3.00 - 4.00 (65mm dia) - 100% rec	3.40	7	D				(GLACIAL				- - -	
- 4.00 - 5.00	- - 4.00-4.45 -	4	SPT(c)	N=40						-	- - - (2.35)	X
(65mm dia) 100% rec	- - 4.40	8	D							-	-	X

	Drilling Pro	gress and	Water Ob	servations	3	
Date	Time	Borehole Depth (m)	Casing Depth (m)	Borehole Diameter (mm)	Water Depth (m)	
						1 1.
						2. 3.
						4.

General Remarks

- Location scanned with GPR prior to breaking ground. No Services encountered.
- 2. Hand dug inspection pit to 1.20m bgl,
- 3. Groundwater not encontered.
- 4. Gas and groundwater monitoring well installed to 5.00m bgl.

All dimensions in metres Scale: 1:25

Tracked window sampling Plant Used: Premier 110 Drilled By: DSUK LTD Logged By: MSouthworth

Method

Used:

Contract: Client:												
Contract:						Client:				Windov		
	Roade	Ву	pass	<u> </u>				Roxhill			\	NS02
Contract Ref:			Start:	06.09.17	Groun	d Level	:	National Grid Co-ord	dinate:	Sheet:		
31	3583		End:	06.09.17		119.	.35	E:474865.0 N	N:251894.1		2	of 2
Progress		Sam	ples / T	ests	5	≅ - ië				e e	Depth	Material
Window Run	Depth	No	Туре	Results	Water	Backfill & Instrumentation		Description of Str		Reduced Level	(Thick ness)	Graphic Legend
4.00 - 5.00 (65mm dia) 100% rec	5.00-5.45	5	SPT(c)	N=43			of chalk an (GLACIAL (stratum of sheet)	grey silty slightly angular to subrounded sandstone. TILL) copied from 3.10m	from previous		5.45	

	Drilling Pro	gress and	Water Ob	servations	5			Con	orol	Domorko		
Date	Time	Borehole Depth (m)	Casing Depth (m)	Borehole Diameter (mm)	Water Depth (m)			Gen	erai	Remarks		
						Α	II dimens	sions in metres		Scale:	1:25	
Method Used:	d Tracked window Sampling Plant Used: Premier			emier 11	0	Drilled By:	DSUK LTD	Logge By:	d MSouthworth	Checked By:	AGS	

GINT_LIBRARY_V8_06. GLB LibVersion: v8_06_018 PrjVersion: v8_06 - Core+Logs - 002 | Log WINDOW SAMPLE LOG - A4P | 313583 - ROADE BYPASS. GPJ - v8_06. RSK Environment Ltd, Abbey Park, Humber Road, Coventry, CV3 4AQ. Tel: 02476 505600, Fax: 02476 501417, Web: www.rsk.co.uk | 14/11/17 - 16:43 | MS8 | Used:

Contract:						Client			Windo	w Samp	ole:
	Roade	е Ву	pass	;				Roxhill		,	WS03
Contract Ref:			Start:	06.09.17	Gro	ound Leve	l:	National Grid Co-ordinate:	Sheet		
31	3583		End:	06.09.17		115	.32	E:474764.6 N:251244.		1	of 1
Progress		Samp	oles / ٦	Tests		er ill &			ced	Depth	Materia
Window Run	Depth	No	Туре	Results		Water Backfill & Instru-		Description of Strata	Reduced Level	(Thick ness)	Legend
	0.10 0.10 0.10 - 0.20-1.00	1 2	ES PID B	0.0ppm			dravelly S	ver brown silty slightly clayey slig SAND. Sand is fine to coarse. Grave o rounded fine to coarse of quart L)	ntly Lis 145 10	0.20	1/ · ½ · ½ · ½ · ½ · ½ · ½ · ½ · ½ · ½ ·
-	0.50	3	D				slightly g Gravel is coarse of	brown slightly silty slightly cla ravelly SAND. Sand is fine to coal s subangular to subrounded fine quartzite, flint and chalk. BLE GLACIOFLUVIAL DEPOSITS)	se.	(1.00)	
-	- - - 1.20-1.65	1	SPT	N=14			Firm orar	ngish brown silty slightly sandy grav	114.12	1.20	
-	1.50	4	D				subangul	and is fine to coarse . Gravel ar to subrounded fine to coarse chalk and flint. L TILL)		- - -	
-	- - 2.00-2.45 -	2	SPT	N=14					-	(1.50) - - -	
- - -	2.50	5	D				Orangish	brown SAND.	112.62	2.70	
- - -	3.00-3.37	3	SPT	N:50 for 215n	mm		(GLAČIA	L TILL) sample hole terminated at 3.00m de		3.00	
-	-								-	-	
- - -	- -								- - -	-	
- - -	- - -								- - -	- - -	

Road,		Orilling Pro	gress and	Water Ol	servation	S			Con	orol	Domorko	
. 1	Date	Time	Borehole Depth	Casing Depth	Borehole Diameter	Water Depth			Gen	erai	Remarks	
nent Ltd, Abbey Park, Humber			(m)	(m)	(mm)	(m)	enco 2. Hand 3. Grou	untered. I dug ins ndwater	pection pit to 1.2 not encontered.	20m bg	breaking ground. I, Il installed to 3.00	
vironment							Α	II dimen	sions in metres		Scale:	1:25
RSK En	Method Used:		d windov npling	V Plan Use	1	remier 11	0	Drilled By:	DSUK LTD	Logge By:	d MSouthworth	Checked By:

GINT_LIBRARY_V8_06.GLB LibVersion: v8_06_018 PrjVersion: v8_06 - Core+Logs - 002 | Log WINDOW SAMPLE LOG - A4P | 313583 - ROADE BYPASS.GPJ - v8_06. RSK Environment Ltd, Abbey Park, Humber Road, Coventry, CV3 4AQ. Tel: 02476 505600, Fax: 02476 501417, Web: www.rsk.co.uk | 14/11/17 - 16/43 | MS8 |

1:25 cale: Checked Rv. **MSouthworth**

0 1 1						0						
Contract:	Dood	. D.	222			Client:		Dowhill		Windo	w Samp ا	
Contract Ref:	Road	е ву		05.09.17	Cro	yund Laval:	,	Roxhill National Grid Co-o	ardinata:	Sheet:		WS04
	3583				Gic	104.			N:250819.0	Sileet.	1	of 2
Progress	3303	Samr	End: oles / T		<u> </u>			L.47 5000.9	14.250619.0	 0		
Window Run	Depth		Type	Results		Water Backfill & Instrumentation		Description of S	strata	Reduced Level	Depth (Thick ness)	Material Graphic Legend
-	0.30	1	ES				Grass ov	rer orangish brown v CLAY. Gravel is angu arse of quartzite. L)	very sandy slightly ular to subrounded	103.95	(0.40)	
	0.30	2	PID D	0.0ppm			slightly g	llowish brown clayeravelly SILT. Sand	is fine to coarse.	-	-	× × × × × ×
- -	0.70	3	В				Gravel is siltstone (GLACIA	subangular to angula lithorelicts. L TILL)	ar fine to coarse of	-	-	×
-	-					;:=:: <u>:</u>				-	[(1.00)	× × × × × ×
Ī	1.10	4 1	D SPT(c)	N=20						102.95	1 40	× × × × × × × × × × × × × × × × × × ×
1.20 - 2.00 (85mm dia) 100% rec	- - -						Firm gree (WEATH	enish grey silty CLAY. ERED RUTLAND FC	DRMATION)	-	- - -	x x x x x x
<u> </u>	1.80 - 2.00-2.45	2	D SPT(c)	N=34			from	1.80m to 2.60m light	grey.	- -	- -	
2.00 - 3.00 (75mm dia) - 95% rec	- - - -							2.60m to 2.95m gre brown slightly sandy.		-	- - - -	X
·	2.80		D				J	0 , ,		-	-	xx x
	3.00-3.45	3	SPT(c)	N=38			at 3.	00m light grey.		-	- - -(3.88)	xx
3.00 - 4.00 (65mm dia) - 95% rec	-									- - -	-	X X
	3.80 4.00-4.45	4	D SPT(c)	N=8						- -	- -	xx x x
- 4.00 - 5.00 (65mm dia) 70% rec	- -									- - -	- -	xx x x

I	Drilling Progress and Water Observations												
Date	Time	Borehole Depth (m)	Casing Depth (m)	Borehole Diameter (mm)	Water Depth (m)								

General Remarks

- Location scanned with GPR prior to breaking ground. No Services encountered.
- 2. Hand dug inspection pit to 1.20m bgl,
- 3. Groundwater not encontered.
- 4. Gas and groundwater monitoring well installed to 2.00m bgl.

All dimensions in metres Scale: 1:25

Drilled Logged Checket

Method Tracked window Used: Plant Used: Premier 110

y: **DSUK LTD** By

Logged C By: **MSouthworth** B

Checked By:

								1111231131	····		
Contract:						Client	:		Windo	w Samp	le:
	Roade	Ву	pass	;				Roxhill		1	NS04
Contract Ref:			Start:	05.09.17	Groun	d Leve	l:	National Grid Co-ordinate:	Sheet		
31	3583		End:	05.09.17		104	.35	E:475088.9 N:25081	9.0	2	of 2
Progress		Sam	ples / 1	ests		% ⁻ 'ö			p e	Depth	Material
Window Run	Depth	No	Туре	Results	Water	Backfill & Instru-mentation		Description of Strata	Reduced Level	(Thick ness)	Graphic Legend
4.00 - 5.00 (65mm dia) 70% rec	4.80 4.90-5.28 -	5	D SPT(c)	N:50 for 229m	nm		Firm green (WEATHEI (stratum of sheet)	ish grey silty CLAY. RED RUTLAND FORMATION) copied from 1.40m from pre	evious - - - - - - - 99.07	5.28	X X X X X X X X X X X X X X X X X X X
- -	- - - -								- - - -	- - - -	
- - -	- - - -								- - - -	- - - -	
- - -	- - - -								-	- - - -	
- - -	- - -								- - -	- - -	
· - -	- - -								-	- - -	
- - -	- - -									-	
- - -	- - - -								-	- - -	

: L																
,	[Orilling F	Progress an	d Wa	ter Ob	servation	s				Con	orol	Domorko			
	Date	Time	Borehole Depth		sing epth	Borehole Diameter		ater pth			Gene	erai	Remarks			
}			(m)		m)	(mm)		n)								
[
-																
2																
;																
										All dimens	sions in metres		Scale:	1:25		
<u>.</u>	Method	Track	ed windo	w	Plan		•			Drilled		Logge	d	Checked	אומי	AGS
	Used:	Sã	ampling		Used	d: Pr	emie	er 11	10	By:	DSUK LTD	Ву:	MSouthworth	By:	M	AG

Contract:						Clien	t:		Windo	w Samp	ole:
001111 0011	Roade	e By	pass	;		0		Roxhill		•	WS05
Contract Ref:			Start:	05.09.17	Gro	ound Lev	el:	National Grid Co-ordinate:	Sheet:		
31	3583		End:	05.09.17		102	2.94	E:475094.7 N:250779.	9	1	of 1
Progress		Sam	ples / ٦	Tests		er R H &			peo el	Depth	Materia
Window Run	Depth	No	Туре	Results		Water Backfill & Instru-		Description of Strata	Reduced Level	(Thick ness)	Graphic Legend
	0.20 0.20 0.20 0.30 0.50	1 2 3	ES PID D	0.0ppm			slightly sil angular t	ROUND: Grass over dark bro ty slightly gravelly CLAY. Gravel o subrounded fine to coarse brick and coal. ROUND)	is -	0.40	<u> </u>
		6 4	B D				silty slightli is angular	occasionally mottled orangish bro y sandy slightly gravelly CLAY/ Gra r to subrounded fine to coarse flint and chalk fragments. TILL)	vel [- (0.90) - -	
	1.20-1.65 1.20	1 5	SPT(c)	N=37		Stiff greer slightly gr subrounde		nish grey very clayey slightly san ravelly SILT. Gravel is angular	101.64 dy	1.30	x _o ×
1.20 - 2.00 (85mm dia) 100% rec	- - - - 1.70	7	D				subrounde (WEATHE from 1	ravelly SILT. Gravel is angular and fine to coarse of chalk fragments. RED RUTLAND FORMATION) I .35m to 1.40m pocket of silt. In 1.50m to 1.55m band of extrem	-	- - - -	×
2.00 - 3.00		9	SPT(c)	N=21		` from 1			-	- - - -	× · × · × · × · × · × · × · × · × · × ·
(75mm dia) 100% rec	2.70	8	D				at 2.80	0m increase in siltstone gravel.	- - - -	(3.15)	× · · · · · · · · · · · · · · · · · · ·
	3.00-3.45	3	SPT(c)) N=31			• • • • • • • • • • • • • • • • • • •		- - -	-	× · × · × · × · × · × · × · × · × · × ·
3.00 - 4.00 (65mm dia) 100% rec	3.70	10	D				•		- - - -	- - -	× . × . × . × . × . × . × . × .
	4.00-4.30	4	SPT(c)	N:50 for 154n	nm	<u>;; </u>	<u>.</u>		-	- - -	× × × × × × × × × × × × × × × × × × ×
							Window sa	ample hole terminated at 4.45m dep		- 4.45 -	× · ×
	-								-	-	
	-								_	-	
	-								-	- -	
	<u> </u>								<u> </u>	- -	
	 - -								[- -	
	<u> </u>								-	-	

۲,												
ad, c	[Orilling Pro	gress and	Water (Observation	s			Con	orol	Domorko	
er Koa	Date	Time	Borehole Depth	Casing Depth	Borehole Diameter	Water Depth			Gene	erai	Remarks	
nent Ltd, Abbey Park, Humber		1 2 3 3 1 2 3 3 1		(mm)	(m)	enco 2. Hand 3. Grou	untered. dug insp ndwater	oection pit to 1.2 not encontered.	20m bg	breaking ground. I, Il installed to 4.00		
/Iron							А	II dimens	sions in metres		Scale:	1:35
E	Method	Tracke	d windov	- 1				Drilled		Logge	d	Checked
ž Ž	Used:	san	npling	Us	^{ed:} Pr	emier 11	0	By:	DSUK LTD	By:	MSouthworth	By:

GINT_LIBRARY_V8_06.GLB LibVersion: v8_06_018 PrjVersion: v8_06 - Core+Logs - 002 | Log WINDOW SAMPLE LOG - A4P | 313583 - ROADE BYPASS.GPJ - v8_06. RSK Environment Ltd, Abbey Park, Humber Road, Coventry, CV3 4AQ. Tel: 02476 505600, Fax: 02476 501417, Web: www.rsk.co.uk | 14/11/17 - 16/43 | MS8 |

Checked Rv.

Contract						Client			\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		- Jo:
Contract:	Roade	, By	nacc			Client:		Roxhill	vvindo	w Samp I	ws06
Contract Ref:	Roaue	; Бу		05.09.17	Gro	ound Level	·	National Grid Co-ordinate:	Sheet:		VVSUO
	3583		End:			97.		E:475179.7 N:250728.3	Onicot.	1	of 2
Progress	3303	Sami	ples / T		<u> </u>			E.473173.7 N.230720.3	<u> </u>		İ
Window Run	Depth	No		Results		Water Backfill & Instru-		Description of Strata	Reduced Level	Depth (Thick ness)	Material Graphic Legend
· ·	0.10 0.10 0.10	1	ES PID	0.0ppm			CLAY with	r dark brown sandy slightly gravelly frequent roots and rootlets. Gravel is subrounded fine to coarse of	96.85	0.30	
-	0.50	2	В			Ш	Firm orangish brown sandy slightly gravelly CLAY. Gravel is angular to subrounded fine to coarse of quartzite and flint. (GLACIAL TILL) Light yellowish brown clayey slightly sandy slightly gravelly SILT. Gravel is angular to		-	(0.50)	
-	0.70	3	D						96.35	0.80	× ×
· = ·	1.00	4	D			Ш	subrounde	avelly SILT. Gravel is angular to d ine to coarse of siltstone. RED RUTLAND FORMATION)	_	(0.60)	× × × × × × × × × × × × × × ×
	1.20-1.65	1	SPT(c)	N=18					95.75	1.40	× ^ × × × × × ×
1.20 - 2.00 (85mm dia) 100% rec	1.40-1.90 1.50 1.50	7 10 5	B ES D				rich CLAY	blackish brown to black silty organic with frequent roots and rootlets. RED RUTLAND FORMATION)	-	(0.50)	X X X X X X X X X X X X X X X X X X X
<u> </u>	2.00-2.45 2.00	2 6	SPT(c) D	N=10		· · · · · · · · · · · · · · · · · · ·	Gravel is a of siltstone	y slightly sandy slightly gravelly SILT. ngular to subrounded fine to coarse RED RUTLAND FORMATION)	95.25	1.90	_ x _ x
2.00 - 3.00 (75mm dia) 64% rec	- - - -								- - - -	(1.20)	
	3.00-3.45	3	SPT(c)	N=9			Light grey	very silty SAND.	94.05	3.10	\(\times \) \(\t
	3.20	7	D				(WEATHE	RED RUTLAND FORMATION)		(0.55)	× × ×
3.00 - 4.00 (65mm dia) 100% rec	- -								93.50	3.65	× × × ×
	-						brown silty	grey occasionally mottled orangish CLAY. RED RUTLAND FORMATION)	-	- - -	xx xx xx
- 4.00 - 5.00 (55mm dia) 100% rec	4.00-4.45 - 4.00 -	4 8	SPT(c) D	N=10		l∘`∘□°°°			- - -	- - -	xx

[Drilling Pro	ogress and	Water Ol	bservations	3		Con	orol	Domorl	40		
Date	Time	Borehole Depth	Casing Depth	Borehole Diameter	Water Depth		Gene	erai	Remarl	(S		
	Date Time Depth Depth Diameter Dept				(m)	1. Location scanned with GPR prior to breaking ground. No Services encountered. 2. Hand dug inspection pit to 1.20m bgl, 3. Groundwater encontered at 3.50m bgl. 4. Gas and groundwater monitoring well installed to 4.00m bgl. All dimensions in metres Scale: 1:25						
							All dimensions in metres		Scale:	1:2	5	
Method	Method Tracked window Plant						Drilled	Logge	ed	Che	ecked	

GINT_LIBRARY_V8_06. GLB LibVersion: v8_06_018 PijVersion: v8_06 - Core+Logs - 002 | Log WINDOW SAMPLE LOG - A4P | 313583 - ROADE BYPASS. GPJ - v8_06. RSK Environment Ltd. Abbey Park, Humber Road, Coventry, CV3 4AQ. Tel: 02476 505600, Fax: 02476 501417, Web: www.rsk.co.uk | 14/11/17 - 16:44 | MS8 |

Used: sampling

Used: Premier 110 By: DSUK LTD By:

MSouthworth By:

							•	VIII LOVII C	// XIVII			
Contract:						Client	-			Windo	v Samp	le:
	Roade	в Ву	pass	;				Roxhill			1	WS06
Contract Ref:			Start:	05.09.17	Grour	d Leve	l:	National Grid Co-ordinate:		Sheet:		
31	3583		End:	05.09.17		97.	15	E:475179.7 N:250	728.3		2	of 2
Progress		Sam	ples / 1	Tests	Water	Backfill & Instru-mentation		Description of Strata		Reduced Level	Depth (Thick	Material Graphic
Window Run	Depth		Туре	Results	× ×	Bacl Ins				Red	ness)	Legend
- 4.00 - 5.00 (55mm dia) 100% rec	4.50 - - - - 5.00-5.45	5	D SPT(c)	N=32			brown silty (WEATHE	grey occasionally mottled CLAY. RED RUTLAND FORMATIC copied from 3.65m from	N)	- - - -	(1.80) - - - -	x _ x x _ x x _ x x _ x x _ x x _ x
-	-						L MC		- 1 . 1	- - 91.70	- 5.45	x x
							Window sa	ample hole terminated at 5.4	5m depth.			
-	-									- - - - - -	- - - - - -	

		Orilling Pro			bservations				Con	oral	Remarks			
	Date	Time	Borehole Depth (m)	Casing Depth (m)	Borehole Diameter (mm)	Water Depth (m)			Gen	erai	Remarks			
			(111)	(111)	(111111)	(111)								
5														
							Α	II dimens	sions in metres		Scale:	1:25		
.	Method Tracked window Jsed: sampling		N Plar Use		emier 11	0	Drilled By:	DSUK LTD	Logge By:	d MSouthworth	Checked By:	MB	AGS	

GINT_LIBRARY_V8_06. GLB LibVersion: v8_06_018 PrjVersion: v8_06 - Core+Logs - 002 | Log WINDOW SAMPLE LOG - A4P | 313583 - ROADE BYPASS. GPJ - v8_06. RSK Environment Ltd, Abbey Park, Humber Road, Coventry, CV3 4AQ. Tel: 02476 505600, Fax: 02476 501417, Web: www.rsk.co.uk | 14/11/17 - 16:44 | MS8 |

Contract:					Clien	t:		Wind	ow Samp	
	Road	е Ву	•				Roxhill			WS07
Contract Ref:			Start:		Ground Leve		National Grid Co-ordinate:	Shee	t:	
31	3583		End:	05.09.17		2.01	E:475127.9 N:250660			of 1
Progress			ples / ٦		Water Backfill & Instru-		Description of Strata	Reduced	Depth (Thick	Graphic
Window Run	Depth	No	Туре	Results	Ba K				ness)	Legend
- - - -		1	ES PID	0.0ppm		以 CLAY with		el is	0.30	\(\frac{1}{2}\). \(\frac{1}\). \(\frac{1}{2}\). \(\frac{1}\). \(\frac{1}{2
	_ 0.50 - - -	2	D			Firm orang	gish brown very sandy slightly gra avel is angular to subrounded fir quartzite.	velly 101.3	0.70	× × × × × ×
	1.00	3	D			Stiff light	yellowish brown clayey slightly s ravelly SILT. Gravel is angula	andy	- (1.10)	× × × × ×
1.20 - 2.00 (85mm dia)	_ 1.20-1.65 _ 1.20 - -	1 4	SPT(c) D	N=30		: subrounde	ed fine to coarse of siltstone.	-		× × × × × × × × × × × × × × × × × × ×
100% rec	- - _1.90	5	D			Extremely Iaminated	weak light yellowish brown sli SILTSTONE.	ghtly	1.80	× × × × × × × × × × × × × × × × × × ×
	2.00-2.45	2	SPT(c)	N=31		(WEATHE Firm to sti ∫ sandy slig	RED RUTLAND FORMATION) ff light yellowish brown clayey sli htly gravelly SILT. Gravel is angul	99.9 ghtly 99.7 ar to		× × × × × × × × × × × × × × × × × × ×
2.00 - 3.00 (75mm dia) 100% rec		6 3	D SPT(c)	N=33		subrounde (WEATHE Stiff to ver CLAY. (WEATHE	ed fine to coarse of siltstone. RED RUTLAND FORMATION) y stiff greenish grey silty slightly s RED RUTLAND FORMATION) Om occasional iron staining. Om mudstone lithorelicts.		-	X X
3.00 - 4.00 (65mm dia) 100% rec	- - - - - - - - - - - - - -	7	D					- - - - -	(2.15)	- · · · · · · · · · · · · · · · · · · ·
	_ 4.00-4.45 - - -	4	SPT(c)	N:50 for 295m	ım			- - - 97.50	6 - 4.45	× · · · · · · · · · · · · · · · · · · ·
	-					Window sa	ample hole terminated at 4.45m de			
-	- -							- - -	-	
	-							- - - -		
	- -							- - -	-	
=	_							<u>-</u>		

1	Orilling Pro	gress and	Water Ob	servations	3	
Date	Time	Borehole Depth (m)	Casing Depth (m)	Borehole Diameter (mm)	Water Depth (m)	
						IĻ

General Remarks

- Location scanned with GPR prior to breaking ground. No Services encountered.
- 2. Hand dug inspection pit to 1.20m bgl,
- 3. Groundwater not encontered.
- 4. Gas and groundwater monitoring well installed to 2.50m bgl.

All dimensions in metres Scale: 1:35

Method **Tracked window** Used: sampling

GINT_LIBRARY_V8_06.GLB LibVersion: v8_06_018 PrjVersion: v8_06 - Core+Logs - 002 | Log WINDOW SAMPLE LOG - A4P | 313583 - ROADE BYPASS.GPJ - v8_06. RSK Environment Ltd, Abbey Park, Humber Road, Coventry, CV3 4AQ. Tel: 02476 505600, Fax: 02476 501417, Web: www.rsk.co.uk. | 14/11/17 - 16/44 | MS8 |

Plant Used: **Premier 110** Drilled
By: **DSUK LTD**

Logged
By: **MSouthworth**

Checked By:

						_	1		SAIVI			
Contract:						Client:				Windo	w Samp	
	Roade	e By				<u> </u>		Roxhill				WS08
Contract Ref:				05.09.17	Groui			National Grid Co-ordin		Sheet:		_
	3583		End:			101.	76	E:475122.6 N:	250604.3	-	1	of 2
Progress Window Run	Depth		Type	ests Results	Water	Backfill & Instru-mentation		Description of Strata	a	Reduced Level	Depth (Thick ness)	Material Graphic Legend
-	- -						frequent re subrounde (TOPSOIL		el is angular to tzite.	101.46	(0.30)	0
-	0.40 0.40	1	ES PID	0.0ppm			CLAY. Gr	gish brown sandy sl avel is angular to subro lint and quartzite.	ightly gravelly ounded fine to	-	(0.50)	
_	0.60	5	D B				`	•		100.96	0.80	× ×
-	0.90	3	D			;∙;∃∙;∙	slightly sa angular to	ery stiff light yellowish ndy slightly gravelly S subangular fine to coal	ILT. Gravel is	-	-	× × × × × × × × × × × × × × × × × × ×
	1.10 1.20-1.65	4	D SPT(c)	N=37			and rare li (WEATHE	nestone. RED RUTLAND FORM	ATION)	-	- - -	× × × × × × × × × × × × × × × ×
1.20 - 2.00 (85mm dia) - 100% rec	- -									-	-	× × × × × × × × × × × × × × × × × × ×
	2.00-2.45 2.00	7 2 8	D SPT(c) D	N=46			from weak siltst	I.80m to 1.90m thin ban one.	nd of extremely	-	- (2.10) - - -	× × × × × × × × × × × × × × ×
2.00 - 3.00 (75mm dia) - 100% rec	- - - -									-	-	× × × × × × × × × × × × × × × × × × ×
	3.00-3.45	3	SPT(c)	N=36			mudstone	y stiff grey silty CLAY v lithorelicts. RED RUTLAND FORM		98.86	2.90	× × × × × × × × × × × × × × × × × × ×
3.00 - 4.00 (65mm dia) 87% rec	3.40	9	D							-	- - -	x _ x _ x _ x _ x _ x _ x _ x _ x _ x _
4.00 - 5.00 (65mm dia) 81% rec	4.00-4.45	4	SPT(c)	N=35						- - - -	(2.55)	X
	4.40	10	D							-	_	xx

Drilling Progress and Water Observations | Date | Time | Borehole | Depth | Depth | Depth | Depth | (m) | (mm) |

General Remarks

- Location scanned with GPR prior to breaking ground. No Services encountered.
- 2. Hand dug inspection pit to 1.20m bgl,
- 3. Groundwater not encontered.
- 4. Gas and groundwater monitoring well installed to 3.00m bgl.

All dimensions in metres Scale: 1:25

Method **Tracked window** Used: Plant Used: Used:

GINT_LIBRARY_V8_06.GLB LibVersion: v8_06_018 PrjVersion: v8_06 - Core+Logs - 002 | Log WINDOW SAMPLE LOG - A4P | 313583 - ROADE BYPASS.GPJ - v8_06. RSK Environment Ltd, Abbey Park, Humber Road, Coventry, CV3 4AQ. Tel: 02476 505600, Fax: 02476 501417, Web: www.rsk.co.uk. | 14/11/17 - 16/44 | MS8 |

Premier 110

Drilled
By: **DSUK LTD**

Logged By: **MSouthworth**

Checked By:

Contract:						Cli	ent:			Windo	w Samp	
	Roade	By	pass	i					Roxhill			WS08
Contract Ref:			Start:	05.09.17	Grou	nd Le	evel		National Grid Co-ordinate:	Sheet	:	
31	3583		End:	05.09.17		1	01.	76	E:475122.6 N:250604.3	}	2	of 2
Progress		Samp	oles / T	ests	5	. ∞	- ioi			b e	Depth	Material
Window Run	Depth	No	Туре	Results	- Mater	Backfil	Instru- mentation		Description of Strata	Reduced	(Thick ness)	Graphic Legend
- 4.00 - 5.00 (65mm dia) 81% rec	- - - 4.90-5.35	5	SPT(c)	N=49				mudstone li (WEATHER	r stiff grey silty CLAY with occasion ithorelicts. RED RUTLAND FORMATION) copied from 2.90m from previou		- - - -	X X X
- L	-									-	-	× _ × - × - - x - x
-	-									96.31	5.45	
-	_							Window sa	mple hole terminated at 5.45m dept	1.	-	X X
-	-										-	
-	-									-	-	
-	-									Ĺ	-	
-	-									-	-	
-	-											
-	-									-	-	
-	_									Į	t	
-	-									_	-	
-	_									-	-	
-	-									_		
-	_									-	-	
-	-											
-	-									-	-	
-	_									-	-	
-	-									-		
-	-									-	-	
_	_											
-	-									-	-	
-	_									-	-	
-	-									ļ	-	
-	-									-	-	
	_									-	t	
- -	-										[
-	_									-	-	

3													
ź	[Orilling Pro	gress and	Water 0	Observation	S			0		Danaanlaa		
	Date	Time	Borehole Depth	Casing Depth	Borehole Diameter	Water Depth			Gene	erai	Remarks		
5			(m)	(m)	(mm)	(m)							
- - -													
, d													
2													
Ę,													
2													
							A	II dimen	sions in metres		Scale:	1:25	
	Method	Tracke	d windo					Drilled		Logge	d	Checked	AGS
2	Used:	san	npling	Us	ed: P	remier 11	0	Ву:	DSUK LTD	Ву:	MSouthworth	By:	' AGS

Contract:						(Client:						Windov	w Samp	le:
	Roade	е Ву	pass	;						Roxhill				1	WS09
Contract Ref:			Start:	05.09.17	Gro	ound	Leve	:		National Grid (Co-ordinate:		Sheet:		
31	3583		End:	05.09.17			113	.77		E:474968	8.6 N:25098	9.9		1	of 1
Progress		Sam	oles / T	Tests		e	å ⊹ë						ced	Depth	Material
Window Run	Depth	No	Туре	Results		Water	Backfill & Instru-mentation			Description of			Reduced	(Thick ness)	Graphic Legend
- - -	0.20 0.20		ES PID	0.0ppm				l gravelly	y CLA coars	AY. Gravel is a	vn very sandy s angular to subro flint and chalk.	unded	442.27	(0.40)	\(\frac{1}{2}\), \(\frac{1}\), \(\frac{1}\), \(\frac{1}{2}\), \(\frac{1}{2
	0.60		D					CLAY.	Sar gular and fli	nd is fine to to angular fine nt.	andy slightly gro coarse. Grav to coarse of qua	vel is	113.37	0.40	
-	1.00		В			•							_	(1.60)	
1.20 - 2.00	1.20-1.65	1	SPT(c)	N=40		***		Gravel	inclu	20m very stiff and a subangul one lithorelicts	and mottled ligh ar to angular f	t grey. ine to	_	-	
(85mm dia) - 100% rec	1.60		D			< < < <							- - -	-	
	2.00-2.45	2	SPT(c)	N=17		< < < < < < < < < < < < < < < < < < <		gravelly of siltst	y CL <i>i</i> tone I	AY. Gravel is sithorelicts.	slightly sandy s subangular to a FORMATION)	slightly ngular	111.77	2.00	
2.00 - 3.00 (75mm dia) - 100% rec	2.60		D			4							- - -	(1.00)	
	3.00-3.24	3	SPT(c)	N:50 for 154m	nm	4					inated at 3.00m	depth	110.77	3.00	<u> </u>
- - - - - -	- - - - - -							due to r	refus	al.			-	- - - - - -	
	-												_	- -	

	Drilling Pro	gress and	Water Ob	servations	3	
Date	Time	Borehole Depth (m)	Casing Depth (m)	Borehole Diameter (mm)	Water Depth (m)	

GINT_LIBRARY_V8_06.GLB LibVersion: v8_06_018 PrjVersion: v8_06 - Core+Logs - 002 | Log WINDOW SAMPLE LOG - A4P | 313583 - ROADE BYPASS.GPJ - v8_06. RSK Environment Ltd, Abbey Park, Humber Road, Coventry, CV3 4AQ. Tel: 02476 505600, Fax: 02476 501417, Web: www.rsk.co.uk. | 14/11/17 - 16/44 | MS8 |

General Remarks

- 1. Location scanned with GPR prior to breaking ground. No Services encountered.
- 2. Hand dug inspection pit to 1.20m bgl,
- Groundwater not encontered.
 Gas and groundwater monitoring well installed to 3.00m bgl.

1:25 All dimensions in metres Scale: Checked Tub

Tracked window Drilled Method Plant Logged Used: Used: Premier 110 sampling DSUK LTD **MSouthworth**

Contract:						Client:			Windo	w Samp	ole:
	Roade	э Ву	pass	;				Roxhill			WS10
Contract Ref:			Start:	06.09.17	Gro	und Level	:	National Grid Co-ordinate:	Sheet:		
31	3583		End:	06.09.17		117	97	E:474832.9 N:251829	0	1	of 1
Progress		Sam	ples / T	ests		ir & II &			pe e	Depth	Materia
Window Run	Depth	No	Туре	Results		Water Backfill & Instrumentation		Description of Strata	Reduced	(Thick ness)	Graphic Legend
- - - - -	0.40 0.40 0.50 0.60	1 3 2	ES PID B D	0.0ppm			CLAY with angular to quartzite. (TOPSOIL Firm oran gravelly subrounde and ironsto	gish brown slightly sandy slig silty CLAY. Gravel is angular d fine to coarse of chal, quartzite, one.	el is - of - 117.67 - htly - to -	0.30	
1.20 - 2.00	1.10 1.20-1.65	6 1	D SPT(c)	N=30		П	(GLACIAL	ning stiff from 1.20m.		-	x · · · × · · · × · · · · × · · · · · ·
(85mm dia) 100% rec 2.00 - 3.00 (75mm dia) 100% rec	1.80 2.00-2.45	2	D SPT(c)	N=22			silty slightli	iff light grey mottled orangish bro y sandy slightly gravelly CLAY. So parse. Gravel is angular to subang rse of chalk and quartzite. TILL)	and L	(1.60)	
3.00 - 4.00	2.80	3	D SPT(c)	N=18			Stiff dark CLAY. (GLACIAL	grey mottled orangish brown s	- - - - 114.77 silty _ -	3.20	
(65mm dia) 100% rec	3.80 - 4.00-4.44	4	D SPT(c)	N:50 for 290m	nm		(02.10)/12		-	(1.25)	X X X X X X X X X X X X X X X X X X X
- - - - - - - - - - - - - - - - - - -							Window sa due to refu	ample hole terminated at 4.45m de sal.	-113.52		x

()											
ad, (Drilling Pro	gress and	Water Ol	bservations	3		Con	امسما	D = 100 = 11	ادم
er Roa	Date	Time	Borehole Depth	Casing Depth	Borehole Diameter	Water Depth		Gene	erai	Remar	KS
vironment Ltd, Abbey Park, Humbe			(m)	(m)	(mm)	(m)	encou 2. Hand 3. Grour	on scanned with GPR p ntered. dug inspection pit to 1.2 idwater not encontered. nd groundwater monitor	20m bg	l,	
iron							A	I dimensions in metres		Scale:	1:35
Ē	Method	Tracke	d windov	v Plan	ıt			Drilled	Logge	d	Checked

Premier 110

Ву:

DSUK LTD

Used:

sampling

GINT_LIBRARY_V8_06. GLB LibVersion: v8_06_018 PrjVersion: v8_06 - Core+Logs - 002 | Log WINDOW SAMPLE LOG - A4P | 313583 - ROADE BYPASS. GPJ - v8_06. RSK Environment Ltd, Abbey Park, Humber Road, Coventry, CV3 4AQ. Tel: 02476 505600, Fax: 02476 501417, Web: www.rsk.co.uk | 14/11/17 - 16:44 | MS8 |

Used:

Checked Rv.

Ву:

MSouthworth

ontract:						Client:			Windo	w Samp	
	Roade	е Ву	-					Roxhill	01 1		WS11
	0500				Gro						
	3583							E:4/5066.5 N:252232.3		1	of 2
Progress Vindow Run	Depth					Water Backfill & Instru- mentatior		Description of Strata	Reduced Level	Depth (Thick ness)	Material Graphic Legend
	0.20 - 0.20 - 0.20		ES PID	0.0ppm			Grass ove gravelly Cl Gravel is a of quartzite (GLACIAL Firm to st	LAY with frequent roots and rootlets angular to subrounded fine to coars at the coars of the coars. TILL/POSSIBLE MADE GROUND) iff brown grey mottled orange silt	y i. = 121.03	0.30	
	0.60		D				to subrour quartzite. (GLACIAL	nded fine to coarse chalk, flint an TILL/POSSIBLE MADE GROUND)	ir d = - -	-	
	1.00		В						+	-	
	1.20-1.65 -	1	SPT(c)	N=22		Ш		=		(2.30)	
1.20 - 2.00 (87mm dia) 100% rec	1.50 - -		D							-	
	2.00-2.45 - -	2	SPT(c)	N=23					-	-	
2.00 - 3.00 (77mm dia) 100% rec	2.50		D			Ш	Firm to sti	ff orangish brown silty slightly sand	у	2.60	-0
<u> </u>	- - - - 3 00 3 45	3	SDT(c)	N-15		°.°□.°.	subangular quartzite, fl	to subrounded fine to coarse of int and quartzite.		-	
	- - -		51 1(0)	14-15						-	
3.00 - 4.00 (67mm dia) 80% rec	3.50 - -		D						-	(0.00)	
4.00 - 5.00 (57mm dia)	- - 4.00-4.45 - -	4	SPT(c)	N=26			becom	ing stiff from 4.00m	-	- (2.64) - - - -	
	2.00 - 3.00 (77mm dia) 100% rec	### South	Progress Sam /indow Run Depth No 0.20	Start: S	Start:	Start: 06.09.17 Grown of the progress Samples / Tests	Start: 06.09.17 Ground Level	Start: 06.09.17 121.33 121.33	Start Start Ge.09.17 Ground Level Start Start Ge.09.17 Ground Level Start Start Ge.09.17 Tests Samples / Tests Tests Tests Samples / Tests Tests Tests Start Ge.09.17 Tests Tests	Start O6,09,17 Start O6,09,17 O6,09,17 O6,09,17 O6,09,17 O6,09,17 O6,09,17 O6,09,17 O6,09,17 O7,09,17 O7,0	Start

1	Orilling Pro	gress and	Water Ob	servations	3	
Date	Time	Borehole Depth (m)	Casing Depth (m)	Borehole Diameter (mm)	Water Depth (m)]-
						lt

General Remarks

- Location scanned with GPR prior to breaking ground. No Services encountered.
- 2. Hand dug inspection pit to 1.20m bgl,
- 3. Groundwater not encontered.
- 4. Gas and groundwater monitoring well installed to 5.00m bgl.

All dimensions in metres Scale: 1:25

Method Used: Plant Used: Premier 110 Drilled By:

DSUK LTD Logged By:

MSouthworth By:

WINDOW SAMDLE LOC

							V	WINDOW SAIN		_ L	UG
Contract:						Client:			Windo	v Samp	le:
Roa	ade By	oass	;					Roxhill		1	WS11
Contract Ref:		Start:	06.09.17	Gro	ounc	l Level	:	National Grid Co-ordinate:	Sheet:		
313583		End:	06.09.17			121	.33	E:475066.5 N:252232.3		2	of 2
Progress	Samp	oles / T	Tests		Water	Backfill & Instru- mentation		Description of Strate	Reduced Level	Depth (Thick	Material Graphic
Window Run Dept	h No	Туре	Results		Wa	Back		Description of Strata	Red	ness)	Legend
4.50 4.50 (57mm dia) 100% rec 4.80-5.2	24 5	D SPT(c)	N:50 for 285i	mm			slightly gra subangular quartzite, fl (GLACIAL (stratum of sheet)	copied from 2.60m from previous	- - - - - -116.10	- - - - - 5.24	
							Window sa due to refu	ample hole terminated at 5.24m depth sal.			0

	Drilling Pro	gress and	Water Ol	oservations	3			Con	orol	Remarks		
Date	Time	Borehole Depth (m)	Casing Depth (m)	Borehole Diameter (mm)	Water Depth (m)			Gen	erai i	Remarks		
						Α	II dimens	sions in metres		Scale:	1:25	
Method Used:					emier 11	0	Drilled By:	DSUK LTD	Logge By:	d MSouthworth	Checked By:	AGS

GINT_LIBRARY_V8_06. GLB LibVersion: v8_06_018 PrjVersion: v8_06 - Core+Logs - 002 | Log WINDOW SAMPLE LOG - A4P | 313583 - ROADE BYPASS. GPJ - v8_06. RSK Environment Ltd, Abbey Park, Humber Road, Coventry, CV3 4AQ. Tel: 02476 505600, Fax: 02476 501417, Web: www.rsk.co.uk | 14/11/17 - 16:44 | MS8 |

Contract:							Client:			Windo	w Samp	le:
	Roade	е Ву	pass	;					Roxhill			WS12
Contract Ref:			Start:	06.09.17	Gro	ound	Level	:	National Grid Co-ordinate:	Sheet:		
31	3583		End:	06.09.17			119	.74	E:475138.6 N:252273.3		1	of 2
Progress		Sam	oles / T	ests		Ŀ	Fi - Se			ced	Depth	Material
Window Run	Depth	No	Туре	Results		Water	Backfill & Instru-		Description of Strata	Reduced Level	(Thick ness)	Graphic Legend
- - - - -	- - 0.30 - 0.30 -	1	ES PID	0.0ppm				gravelly CI Gravel is a of quartzite (POSSIBLI Firm greyi slightly gra to subroun quartzite.	E MADE GROUND) ish brown mottled orangish brown ivelly sandy CLAY. Gravel is angular ided fine to coarse of chalk, flint and	- - 119.34 - -	0.40	
- - -	0.80	2 4	D B					(POSSIBLI	E MADE GROUND)	- -	- -	
	1.10	3	D SPT(c)	N=9						- - -	(1.50) - -	
1.20 - 2.00 (85mm dia) - 100% rec	1.60	5	D							117.84	1.90	
- -	- 2.00-2.45 2.00 -	2 6	SPT(c) D	N=11				silty CLAY. to coarse c (GLACIAL	grey slightly gravelly slightly sandy Gravel is angular to subrounded fine of chalk. TILL/POSSIBLE MADE GROUND) E MADE GROUND)	- - 117.44	(0.40)	
2.00 - 3.00 (75mm dia) - 100% rec	2.60	7	D					sandy sili subangular (GLACIAL	gish brown slightly gravelly slightly ty CLAY. Gravel is angular to fine to coarse of chalk and quartzite. TILL/POSSIBLE MADE GROUND) E MADE GROUND)	- - - -	-	
-	3.00-3.45	3	SPT(c)	N=15				becom	ning firm to stiff from 3.00m bgl	- - -	-	
3.00 - 4.00 (65mm dia) - 100% rec	3.50	8	D					from ∶ clay.	3.40m to 3.60m pockets of dark grey	- - - -	- - - -	
- 4.00 - 5.00 (65mm dia) 100% rec	- - 4.00-4.45 -	4	SPT(c)	N=20				becom	ning stiff from 4.00m.	- - - -	(3.15)	

I	Drilling Progress and Water Observations													
Date	Time	Borehole Depth (m)	Casing Depth (m)	Borehole Diameter (mm)	Water Depth (m)									
						П								

General Remarks

- 1. Location scanned with GPR prior to breaking ground. No Services encountered.
- 2. Hand dug inspection pit to 1.20m bgl,
- Groundwater not encontered.
 Gas and groundwater monitoring well installed to 5.00m bgl.

1:25 All dimensions in metres Scale:

Tracked window Method Used: sampling

GINT_LIBRARY_V8_06.GLB LibVersion: v8_06_018 PrjVersion: v8_06 - Core+Logs - 002 | Log WINDOW SAMPLE LOG - A4P | 313583 - ROADE BYPASS.GPJ - v8_06. RSK Environment Ltd, Abbey Park, Humber Road, Coventry, CV3 4AQ. Tel: 02476 505600, Fax: 02476 501417, Web: www.rsk.co.uk. | 14/11/17 - 16/44 | MS8 |

Plant Used: Premier 110 Drilled DSUK LTD Logged **MSouthworth** Checked Tub

							\\\\\\	VIIIVDOVV				
Contract:						Client:				Windo	w Samp	
	Roade	Ву	pass	;				Roxhill			1	WS12
Contract Ref:			Start:	06.09.17	Groun	d Level	l:	National Grid Co-ordina	te:	Sheet:		
31	3583		End:	06.09.17		119	.74	E:475138.6 N:2	52273.3		2	of 2
Progress			ples / T		Water	Backfill & Instru- mentation		Description of Strata		Reduced Level	Depth (Thick	Material Graphic
Window Run	Depth	No	Туре	Results	Š	Bac		•		Rec	ness)	Legend
- 4.00 - 5.00 (65mm dia) 100% rec	5.00-5.45	5	SPT(c)	N=31			sandy sil subangula (GLACIAL (POSSIBL	gish brown slightly gra ty CLAY. Gravel is r fine to coarse of chalk a TILL/POSSIBLE MADE (E MADE GROUND) copied from 2.30m fro	angular to nd quartzite. GROUND) om previous	- - - - - - - - -	- - - - - - -	
-						* * * * * *	Window sa	ample hole terminated at 5	5.45m depth.	-	5.45	
					William Sa	imple note terminated at a	.+om depui.					
-	-									-	_	
-	-							-	-			
-	-								-	-		
										-	_	
-										-	-	
										_	_	
										-	ļ	

	Drilling Pro							Con	oral	Remarks		
Date	Time	Borehole Depth (m)	Casing Depth (m)	Borehole Diameter (mm)	Water Depth (m)			Gen	ziai	Remarks		
						А	II dimens	sions in metres		Scale:	1:25	
Method Used:				t d: Pr	emier 11	0	Drilled By:	DSUK LTD	Logge By:	d MSouthworth	Checked By:	AGS

GINT_LIBRARY_V8_06. GLB LibVersion: v8_06_018 PrjVersion: v8_06 - Core+Logs - 002 | Log WINDOW SAMPLE LOG - A4P | 313583 - ROADE BYPASS. GPJ - v8_06. RSK Environment Ltd, Abbey Park, Humber Road, Coventry, CV3 4AQ. Tel: 02476 505600, Fax: 02476 501417, Web: www.rsk.co.uk | 14/11/17 - 16:44 | MS8 |

Contract:								Cli	ient:					Boreho	ole:	
		Road	le By	pass								Roxhill				BH01
Contract Ref	f:			-	18.09	.17	Grou	ınd L	evel:			National Grid Co-or	rdinate:	Sheet:		
3	135	583		End:	20.09	.17		1	19.7	' 0		E:475141.6	N:252265.6		1	of 4
Depth (m)	No	Samples Type		ting sults	TCR S	echa SCR	nical RQD	Log If	Backfill & Instru-	Water		Description o	f Strata	Reduced Level	Depth (Thick ness)	Material Graphic Legend
0.50 0.50 0.60 0.60 1.00-1.45	1 2 1	ES PID D PID SPT	0.0բ 0.0բ N=	opm	(70)	(/-)	(70)			- - -	mot grav cob coa sub cha (GL	ss over firm to stitled orange silty slig relly CLAY with occibles and boulders. rse. Gravel is rounded fine to coar lk and limestone. ACIAL TILL/POSOUND)	Intly sandy slighty asional limestone Sand is fine to subangular to rse quartzite, flint,			
1.60	3	D PID	0.0p						П					- - - -	- - - -	
2.00-2.45 2.60 2.60 3.00-3.45	4 3	D PID SPT	N= 0.0p N= N=	opm :24								stiff from 3.00m bgl . becoming brown a 3.50m			(5.30)	
- 5.00-5.45	5	SPT	N=	:18								stiff from 5.00m bgl		114.40	5.30	
5.60 5.60 6.00-6.45	5	D PID SPT	0.0p N=	•							silty occ is fi sub Cot 250	dark grey light gre slightly sandy gra asional cobbles of ne to coarse. Grave rounded fine to c bles are subang mm bgl. ACIAL TILL)	avelly CLAY with limestone. Sand el is subangular to oarse limestone.	-	-	
6.60 6.60	6	D PID		opm										- - -	- - - -	
7.00-7.45	7	SPT	N=	:24										-	(3.70)	
7.60 7.60 8.00-8.45	7	D PID SPT		opm =24										- - - - -	- - - - -	
- - 8.60 - 8.60	8	D PID	0.0	opm								brown orange at 8.7	70m bgl.	110.70	9.00	

	Boring Progress and Water Observations													
Date	Time	Borehole Depth	Casing Depth	Borehole Diameter (mm)	Water Depth									
19/09/17 19/09/17 19/09/17 19/09/17		1.00 19.50 19.50 30.00	None 9.00 9.00 9.00	300 123 123 123	Dry Dry Dry									

General Remarks

- 1. Location scanned with GPR prior to breaking ground. No services encountered.
- Hand dug inspection pit tp 1.20m bgl.
 Groundwater not encountered.
- Gas and groundwater monitoring well installed to 20.00m bgl upon completion.

Α	II dimensions in metre	es .	Scale:	1:50

Method Plant Used: **Rotary Cored** Used:

Comacchio GEO 205

Drilled Ву: **DSUK LTD** Logged By: **RSalama**

										BOI	KEN	JLI	_ L	UG
Contract:							Client:					Boreho		
		Road	de Bypass							Roxhill				BH01
Contract Ref			Start:	18.0	9.17	Grou	und Level:			National Grid Co-ordinate		Sheet:		
3	13	583	End:	20.0			119.7			E:475141.6 N:25	2265.6	<u></u>	2	of 4
Depth (m)	No		s & Testing Results		Mecha SCR	RQD		Water		Description of Strat	а	Reduced Level	Depth (Thick ness)	Material Graphic Legend
9.00-10.00 9.00-9.45 9.00-9.19	9	SPT C	N=48	35	19	0	((IIIII))		MUI spa (BLI FOF	DSTONE with horizonta ced planar stepped clean f ISWORTH LI RMATION) mottled light grey from 9.6	racture. MESTONE 60m bgl.	109.70	(1.00)	
- 10.00-11.50 - 10.15 - 10.15	10	D PID	0.0ppm	100	92	80		mottled light grey from 9.60m bgl. band of firm clay from 9.60m to 9.70m bgl. Very to extremely strong light grey LIMESTONE with horizontal to vertical closely spaced planar smooth clean fractures. (BLISWORTH LIMESTONE FORMATION) mottled brown beige from 10.65m					-	
11.50-13.00 - 11.83-12.00 - 12.00-12.06	11	C SPT	N:30 for 10mn	97	79	75			bgl. to 1	. band of soft grey clay fr 1.15m bgl. band of very soft dark gre 00, to 12.05m bgl.	om 11.10m		(5.20)	
13.00-14.50 13.20-13.50 13.40 13.40	l	C D PID	0.0ppm	93	78	68				light grey in colour from 1	3.50m bgl.		- - - - - - - - - - - - - - - - - - -	
14.50-16.00 - 14.80-15.00 - 15.00-15.06	ı	C SPT	N:50 for 20mn		X	X						104.50	15.20	
- - 15.60 - 15.60 - - 16.00-17.50	15	D PID	0.0ppm	82	81	68			MUI clos frac (BL	dium strong to strong dar DSTONE with horizontal sely spaced planar smooth tures. ISWORTH LIRMATION)	to vertical,	- 104.20 - - - - -	15.50	
16.70-16.95		С		91	80	79			Very LIM med ope (BL	y to extremely stro ESTONE with horizonta dium space planar smo n clean fractures.		-	(1.95)	
17.50-19.00				93	85	81			Des	cription on next sheet		102.25	- 17.45 - - -	

, g	E	Boring Pro	gress and	Water Ol	oservations	3			Co	noral	Remarks		
5	Date	Time	Borehole	Casing	Borehole Diameter	Water			Ge	lierai	Remarks		
2	Date	111110	Depth	Depth	(mm)	Depth							
5													
2													
2													
į													
2													
5							A	II dimen	sions in metre	S	Scale:	1:50	
	Method							Drilled		Logged		Checked 2	
Ś	Used:	Used: Comacchio C						By:	DSUK LTD	Ву:	RSalama	By:	AGS

Contract: Client: Perchele:													
Contract:								Client:			Boreho	ole:	
		Road	de By	•						Roxhill			BH01
Contract Ref	:			Start:	18.09	9.17	Grou	und Level:		National Grid Co-ordinate:	Sheet:		
3	135	583		End:	20.09	9.17		119.70)	E:475141.6 N:252265.6		3	of 4
Depth			s & Test		TCR	lecha SCR	anical RQD	lt Backfill & Backfill & mentation	Water	Description of Strata	Reduced Level	Depth (Thick	Graphic
(m)	No	Туре		sults	(%)	(%)	(%)	(mm) & = &	>		Re	ness)	Legend
- 18.00-18.03	12	SPT	N:50 fo	r 20mm	93	85	81 			Medium strong to strong grey silty MUDSTONE with horizontal closely spaced planar smooth and rough tight to partly open fractures. (POSSIBLE RUTLAND FORMATION) (stratum copied from 17.45m from		-	
19.00-20.00					1	1	↑			previous sheet) light blue grey from 18.00m to	-	-	
19.30-19.40 19.50 19.50 20.00-21.00	17 18	C D PID	0.0p	opm	55	20	20			19.30m bgl dark grey from 19.30m to 19.70m bgl.	-	- - - - - - -	
20.60-20.80	19	С			49	26 	16				-	(5.75)	
_ - 21.00-22.50 - 21.00-21.07		SPT	N:50 fo	r 40mm	*	X	X			dark grey from 21.00m bgl.	- - - - -	- - - - -	
-					59	56	56				-	- - - - -	
22.50-24.00					*	-	*				-	-	
- 23.20 - 23.20	20	D PID	0.0p	opm	85	82	41			Extremely strong grey LIMESTONE with horizontal close to medium spaced planar smooth partly open clean	96.50	23.20	
- 23.80-24.00 24.00-25.50		С			X	_	X			fractures. (POSSIBLE RUTLAND FORMATION)	- - -	(1.60)	
24.00-24.03	14		N:50 fo	r 20mm						band of medium strong to strong silty mudstone from 24.30m to 24.45m bgl.	- - - - 94 90	24.80	
- 24.70 _24.70	22	D PID	0.0	opm	100	95	88			Strong grey silty MUDSTONE with vertical to sub-horizontal closely to medium spaced planar smooth and rough tight to partly open fractures with			
25.50-27.00					X	 				shell fragments. (POSSIBLE RUTLAND FORMATION)	- - - - -	- - - -	
- - - - - - -					100	97	93			dark grey from 26.00m bgl.	-	-	

	Boring Pro	ogress and	Water Ob	servations	3			Co	noral	Domorko		
Date	Time	Borehole Depth	Casing Depth	Borehole Diameter (mm)	Water Depth			Ge	nerai	Remarks		
											4.50	
						A	II dimen	sions in metre	es	Scale:	1:50	
Method Used:							Drilled By:	DSUK LTD	Logged By:	RSalama	Checked By:	AGS

Contract:							Cli	ent:					Boreho	ole.	
		Road	de Bypass								Roxhill		20.0		BH01
Contract Ref	f:		Start:		9.17	Grou	und L	evel:			National Grid Co	o-ordinate:	Sheet:		
3	13	583	End:					19.70)		E:475141.	6 N:252265.6		4	of 4
			s & Testing			anical							9 <u>-</u>	Depth	Material
Depth (m)	No		Results	TCR (%)	SCR (%)	RQD (%)	If (mm)	Backfill & Instru- mentation	Water		Description		Reduced Level	(Thick ness)	Graphic Legend
27.00-28.50 27.00-27.32	15	SPT	N:50 for 170mm	63	61	61				med roug shel (PO	cal to sub-hor ium spaced pl ih tight to partly I fragments. SSIBLE RUTLAN	MUDSTONE with rizontal closely to lanar smooth and open fractures with ND FORMATION)	- - - - - -	(5.30)	
28.15-28.50	23	С								(stratum copied from 24.80m from previous sheet)				- - -	
28.50-30.00				X	X	X	_						- - - - -	- - - - -	
-				70	59	55							- - - - -	-	
30.00-30.10	16	SPT	N:50 for 85mm	_	_	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \					torehole terminat	ed at 30.10m bgl.	89.60	30.10	

ξ.														
ממ,	F	Boring Pro	ogress and	Water Ob	servations	3			Co	norol	Domorko			
	Date	Time	Borehole	Casing	Borehole Diameter	Water			Ge	nerai	Remarks			
5	Date	Tillie	Depth	Depth	(mm)	Depth								
· .														
<u> </u>														
,														
1														
							Δ	II dimens	sions in metre	es	Scale:	1:50		
	Method	lethod Plar						Drilled		Logged		Checke	dra 0	
Ś	Used:					acchio GEC	205	By:	DSUK LTD	By:	RSalama	By:	WP	AGS

Contract:	ntract: Roade Bypass												Boreho	ole:	
		Road	de By	pass								Roxhill			BH02
Contract Ref	:			Start:	15.09	9.17	Grou	und L	evel:			National Grid Co-ordinate:	Sheet:		
3	135	583		End:	18.09				21.4			E:475077.5 N:252210.1		1	of 4
Depth (m)	No	Sample: Type	s & Test Res	ting sults		/lecha SCR (%)	anical RQD (%)	Log If (mm	Backfill & Instru-mentation	Water		Description of Strata	Reduced Level	Depth (Thick ness)	Material Graphic Legend
- 0.70 - 0.70 - 1.00-1.45 - 1.20 - 1.20	1 1 2	D PID SPT ES PID	0.0p N= 0.0p	=7							orar grav Gra to d with bou (GL	n to stiff grey mottled brown red nge silty slightly sandy slightly velly CLAY. Sand is fine to coarse. Evel is subangular to subrounded fine coarse quartzite, flint and limestone n occasional limestone cobbles and alders. ACIAL TILL/POSSIBLE MADE OUND)		(1.80)	
1.70 _1.70 _2.00-2.45	3 2	D PID SPT	0.0p N=								san fine sub and	n to stiff brown orange silty slightly dy slightly gravelly CLAY. Sand is to coarse. Gravel is subangular to trounded fine to coarse quartzite, flint I limestone with frequent limestone	119.65	1.80	
2.70 2.70 3.00-3.45	4 26	D PID UT	0.0p 100% re	opm ecovery	,						(GL GR	bles. ACIAL TILL/POSSIBLE MADE OUND) n to stiff grey mottled brown red	118.25	3.20	
3.70 _3.70	5	D PID	0.0p	opm							orar grav Gra sub and (GL	nge silty slightly sandy slightly velly CLAY. Sand is fine to coarse. It is subangular gular to prounded fine to coarse quartzite, flint limestone. ACIAL TILL/POSSIBLE MADE OUND)	117.55	3.90	
4.70-5.15 -4.70 4.70 4.70	3 6	SPT D PID	N= 0.0p	:16 opm							Firn san fine sub	dark grey mottled brown from 3.70m a.80m bgl. In to stiff brown orange silty slightly dy slightly gravelly CLAY. Sand is to coarse. Gravel is subangular to brounded fine to coarse quartzite, flint I limestone with frequent limestone	116.65	4.80	
5.70-6.10 _5.70 _5.70	4 7	SPT D PID		:29 opm							cob (GL GR	bles. ACIAL TILL/POSSIBLE MADE OUND) In light grey mottled brown orange silty htly sandy slightly gravelly CLAY.	- - - - - -	(1.90)	
6.70-6.82 6.70 6.70 7.00 7.00	5 8 9	SPT D PID D PID	N:50 fo 0.0p 0.0p								San sub qua freq (GL 4.80 Stiff lime (WE	nd is fine to coarse. Gravel is cangular to subrounded, fine to coarse urtzite, flint and limestone with quent limestone cobbles. ACIAL TILL) . light grey mottled brown between 0m to 5.10m bgl. f grey CLAY with thin bands of estone. EATHERED BLISWORTH IESTONE FORMATION)	114.75	(1.80)	
- 8.50-10.00 - 8.50-8.95	6	SPT	N=	-44	23	13	0				Des	scription on next sheet	112.95	8.50	000 ×0 0 ×

Ŀ	Boring Pro	gress and	Water Ob	servations	3
Date	Time	Borehole	Casing	Borehole Diameter	Water
Date	rime	Depth	Depth	(mm)	Depth
14/09/17		11.50	10.00	300	11.30
15/09/17		24.00	10.00	123	21.40
18/09/17		30.00	10.00	123	21.30

General Remarks

- 1. Location scanned with GPR prior to breaking ground. No services encountered.
- Hand dug inspection pit tp 1.20m bgl.
 Groundwater encountered at 25.20m bgl and rose to 23.60m after 20 minutes.
- 4. Gas and groundwater monitoring well installed to 30.00m bgl upon completion.

1:50 All dimensions in metres Scale:

Method Used: **Rotary Cored**

GINT_LIBRARY_V8_06. GLB LibVersion: v8_06_018 PrjVersion: v8_06 - Core+Logs - 002 | Log COMPOSITE LOG - A4P | 313583 - ROADE BYPASS. GPJ - v8_06. RSK Environment Ltd, Abbey Park, Humber Road, Coventry, CV3 4AQ. Tel: 02476 505600, Fax: 02476 501417, Web: www.rsk.co.uk, | 10/11/17 - 14:49 | DM1 |

Plant Used: Comacchio GEO 205 Drilled Ву: **DSUK LTD** Logged By:

Checked **RSalama**

Contract:							Cli	ient:				Boreho	le:	
		Roa	de Bypass								Roxhill			BH02
Contract Ret	f:		Start:	15.0	9.17	Grou	und L	evel:			National Grid Co-ordinate:	Sheet:		
3	13	583	End:	18.0	9.17		1	21.	45		E:475077.5 N:252210.1		2	of 4
Depth (m)	No		s & Testing Results	TCR (%)	Mecha SCR (%)	RQD (%)	Log If (mm	Backfill & Instru-	mentation Water		Description of Strata	Reduced Level	Depth (Thick ness)	
-				23	13	0					Stiff silty CLAY with limestone cobbles. (WEATHERED BLISWORTH LIMESTONE FORMATION) (stratum copied from 8.50m from previous sheet)	-	(1.60)	0 _ 0.0 0 _ 0.0 0 _ 0.0 0 _ 0.0
_ - 10.00-11.50 _ 10.00-10.45		SPT	N=44	*	X						Extremely weak grey silty MUDSTONE.	111.35	_	
10.60	10	D								\	(BLISWORTH LIMESTONE FORMATION) Strong to very strong silty LIMESTONE.	111.05	10.40 - - -	
10.60		PID	0.0ppm	100	92	80					(BLISWORTH LIMESTONE FORMATION)	- - -	(1.10)	
11.15-11.50 11.50-13.00		С		<u> </u>	X	L X				\perp		109.95		
11.50-11.58			N:50 for 45mm								subangular fine to coarse limestone with horizontal to vertical close to medium	109.75	11.70 - -	
- 12.00 - 12.27-12.54	12	PID C	0.0ppm	97	79	75				Ш	spaced planar smooth clean fractures. (BLISWORTH LIMESTONE FORMATION)	-	- - -	
13.00-14.50				X	X	X					Strong to very strong grey LIMESTONE with horizontal to subhorizontal with close to medium spaced planar smooth clean fractures. (BLISWORTH LIMESTONE FORMATION)	-	- - - - - -	
13.50-13.55 13.50 13.57-13.77		D PID C	0.0ppm	93	78	68					mottled brown from 12.10m to 12.60m bgl mottled brown from 13.00m to 13.60m bgl.	-	(4.50)	
- 14.50-16.00 - 14.50-14.56 -		SPT	N:50 for 30mm		X	*						-	- - - - - - -	
- - 15.70 _15.70	15	D PID	0.0ppm	82	81	68					band of very stiff clay from 15.60m to 15.65m bgl.	-	- - - - - -	
16.00-17.50 16.00-16.20		С	rr								Weak dark grey silty MUDSTONE with	105.25	-	
				91	80	79				\downarrow	(BLISWORTH LIMESTONE FORMATION)	104.85	16.60 - - -	
- 17.50-19.00 - 17.50-17.60		SPT	N:50 for 50mm	93	85	81					Very strong to Extremely strong grey silty LIMESTONE with medium space horizontal tight fractures. (BLISWORTH LIMESTONE FORMATION)	-	(2.05)	

	Boring Pro	gress and	Water Ob	servations	5			Co	noral	Domorko		
Date	Time	Borehole Depth	Casing Depth	Borehole Diameter (mm)	Water Depth			Ge	nerai	Remarks		
						Α	II dimen	sions in metre	es	Scale:	1:50	
Method Used:						205	Drilled By:	DSUK LTD	Logged By:	RSalama	Checked By:	AGS

Contract:							CI	ient:				Boreho	ole:	
		Road	de Bypass								Roxhill			BH02
Contract Ret	f:		Start:	15.0	9.17	Gro	und L	.evel:			National Grid Co-ordinate:	Sheet:		
3	13	583	End:	18.0	9.17		1	21.4	5		E:475077.5 N:252210.1		3	of 4
		Sample	s & Testing	N	Лесhа	anical					1	8 -	Depth	Material
Depth (m)	No		Results	TCR (%)	SCR (%)	RQD (%)	If (mm	Backfill & Instru-mentation	Water		Description of Strata	Reduced	(Thick ness)	
_										 to 1	. band of very stiff clay from 17.45m			
-										lo i	7.50m bgl.	-	-	
18.50-18.60	17	С		93	85	81						102.80	18.65	
-				J							remely to very weak dark grey silty DSTONE with closely spaced	1	-	
19.00-20.00				-	T T	\				hori	zontal - subhorizontal tight to party	· -	-	
19.00 19.00	18	D PID	0.0ppm							ope (PC	n clean and clay infilled fractures. SSIBLE RUTLAND FORMATION)	Ē		
19.00		FID	О.ОРРП	55	20	20					mottled blue from 19.00m bgl.	-	-	
-												-	-	
_ - 20.00-21.00				-	X	X		*.*H.*.				Ė		
20.00-21.00		SPT	N:50 for 95mm	Ī	lT							-		
-				49	26	16						-	-	
-				49	20	10						-	-	
				V	V	↓]			Ė	-	
21.00-22.50				A	A	A						E	(5.05)	
-												-	(5.35)	
-												-	-	
-				59	56	56						-	-	
-												E		
22.17-22.40	19	С]			-		
-				<u> </u>	¥	, Y						-	-	
- 22.50-24.00 22.50-22.53		SPT	N:50 for 20mm	1	1	1					band of stiff clay from 22.50, to 60m bgl.	' 	-	
	'-	0	14.00 101 2011111							22.0	50m 5g	Ē		
23.00	20	D										-		
23.00		PID	0.0ppm	85	82	41] _1			-	-	
-								:: ::			h d - f 4:ff - l f 00 00	-	-	
-											. band of very stiff clay from 23.60m	-	04.00	
_ - 24.00-25.50				- X -	X	X					remely strong grey silty LIMESTONE		24.00	
2 1.00 20.00]	with	n horizontal to subhorizontal close to	· [-	
-											dium spaced planar smooth clear ctures.	-		
-				100	95	88					SSIBLE RUTLAND FORMATION)	F	(1.40)	
				100	95	00			1	,		E		
25.05-25.70	21	С							¥			-	-	
-					↓					141			25.40	
25.50-27.00					À	A	1				ak to strong grey MUDSTONE with dium spaced horizontal planar smooth		-	
25.50-25.54 25.50	13 22	SPT D	N:50 for 20mm							part	tly open to open clean fractures.	E		
25.50	44	PID	0.0ppm								SSIBLE RUTLAND FORMATION) band of soft silty clay from 25.50m to	, -	-	
-				100	97	93					60m bgl.	F	-	
-								l:H:				Ė		
-		_										E	-	
26.77-27.00	23	С	1	l	₩	₩		::H::	1			+	-	

	Boring Pro	ogress and	Water Ob	servations	3			Co	noral	Domorko			
Date	Time	Borehole		Borehole Diameter	Water			Ge	nerai	Remarks			
		Depth	Depth	(mm)	Depth								
						A	II dimen	sions in metre	es	Scale:	1:50		
Method Used:						205	Drilled By:	DSUK LTD	Logged By:	RSalama	Checke By:	THE	AGS

Contract:							Cli	ent:				Boreho	le:	
		Road	de Bypass								Roxhill			BH02
Contract Ref:			Start:	15.09	9.17	Grou	und L	evel:			National Grid Co-ordinate:	Sheet:		
3′	135	583	End:	18.09				21.4			E:475077.5 N:252210.1		4	of 4
Depth (m)		Sample: Type	s & Testing Results		Mecha SCR (%)	nical RQD (%)	Log If (mm)	Backfill & Instru- mentation	Water		Description of Strata	Reduced Level	Depth (Thick ness)	
27.00-28.50 - 28.30 - 28.30 - 28.50-30.00 - 28.50-28.75	24	D PID SPT	0.0ppm N:50 for	63	61	61				medi partly (POS (strat	ak to strong grey MUDSTONE with ium spaced horizontal planar smooth y open to open clean fractures. SSIBLE RUTLAND FORMATION) tum copied from 25.40m from ious sheet) . dark grey from 27.00m to 28.20m		(4.60)	
29.10-29.40	25	С	160mm	70	59	55				bgl.	mottled blue from 29.20m to 29.80m	-		
								o		В	orehole terminated at 30.00m bgl.	91.45		

	Boring Pro	ogress and	Water Ob	servations	3			0-		Davasarles		
Date	Time	Borehole		Borehole Diameter	Water			Ge	nerai	Remarks		
		Depth	Depth	(mm)	Depth							
										1		
						A	II dimen	sions in metre	es	Scale:	1:50	
Method Used:	Rota	ry Cored	Plan Use		cchio GEC	205	Drilled By:	DSUK LTD	Logged By:	RSalama	Checked By:	AGS

												DOKLII			.00
Contract:							Cli	ient:					Boreho		
		Roa	de Bypass								Roxhill				BH03
Contract Re			Start:			Grou			_		National Grid Co		Sheet:		
3	313	583	End:	13.0				19.6			E:474853.	9 N:251919.4	<u> </u>	1	of 2
Depth (m)	No		es & Testing Results		Mecha SCR	RQD	Log If	Backfill & Instru-mentation	Water		Description	of Strata	Reduced Level	Depth (Thick ness)	Material Graphic Legend
- 1.00-1.45 - 1.00 - 1.00 - 1.50 - 2.00 - 2.00	1 1 2 3	SPT D PID D	N=43 0.0ppm 0.0ppm	(78)	(78)	(70)	(111111			sand root subr (TO Firm sligh to	dy CLAY with flets. Gravel rounded fine to con PSOIL) To orange brown the sandy CLAY.	n slightly gravelly Gravel is angular to coarse chalk	119.30	- '	
- 3.00-3.32 3.00 3.00	2 4	SPT D PID	N:50 for 170mm 0.0ppm							sligh to s flint	ntly gravelly CLAN	grey slightly sandy /. Gravel is angular to coarse quartzite,	-116.60	3.00	
4.00 4.00	5	D PID	0.0ppm										115.10	4.50	
4.50-6.00 4.50-4.95	3	SPT	N=43	37	8	7				sligh coar subr LIMI (WE	ntly gravelly CLA rse. Gravel	edium coarse BLISWORTH		(2.60)	
5.90 5.90 6.00-7.50 6.00-6.45	4	PID SPT	0.0ppm N=45	45	33	33							112.50	- - - - - - - - - - - - - - - - - - -	
7.50-9.00 7.50-7.54	5	SPT	N:50 for 30mm	X	X	*		· · · · · · · ·	1	LIMI space plan fract (BLI	ESTONE with	fine grained silty close to medium vertical stepped and d smooth clean LIMESTONE		-	
8.20 8.20 8.35-8.60	7 8	D PID C	0.0ppm	89	69	48				bgl.	with shell inclusion beige brown from	ons from 7.60m bgl. om 7.90m to 8.20m om 8.40m to 9.10m	- - - - -	-	

I	Boring Pro	gress and	Water Ob	servations	3
Date	Time	Borehole Depth	Casing Depth	Borehole Diameter (mm)	Water Depth
12/09/17 13/09/17 13/09/17		3.00 3.00 15.00	4.50 4.50 9.00	123 123 123	Dry 2.60 13.60

GINT_LIBRARY_V8_06. GLB LibVersion: v8_06_018 PrjVersion: v8_06 - Core+Logs - 002 | Log COMPOSITE LOG - A4P | 313583 - ROADE BYPASS. GPJ - v8_06. RSK Environment Ltd, Abbey Park, Humber Road, Coventry, CV3 4AQ. Tel: 02476 505600, Fax: 02476 501417, Web: www.rsk.co.uk, | 10/11/17 - 14:49 | DM1 |

General Remarks

- 1. Location scanned with GPR prior to breaking ground. No services encountered.

- Hand dug inspection pit tp 1.20m bgl.
 Groundwater encountered at 8.00m bgl.
 Gas and groundwater monitoring well installed to 15.00m bgl upon completion.

1:50 All dimensions in metres Scale:

Method Plant Used: **Rotary Cored** Used: Comacchio GEO 205 Drilled **DSUK LTD** Logged By: **RSalama**

Contract:							Cli	ient:				Boreho	ole:	
Contract.		Roa	de Bypass								Roxhill	Borone		BH03
Contract Re	f:		Start:	12.0	9.17	Grou	und L	_evel:			National Grid Co-ordinate:	Sheet:		
3	13	583	End:					119.6	0		E:474853.9 N:251919.4		2	of 2
		Sample	s & Testing	1	Mecha	anical	Log	& - Light	70			p e	Depth	Material
Depth (m)	No	Туре	Results	TCR (%)	SCR (%)	RQD (%)	lf (mm	Backfill & Instru-	Water		Description of Strata	Reduced	(Thick ness)	Graphic Legend
9.00-10.50	6	SPT	N:50 for 20mm	89	56	45				LIM spa plai frac (BL FOI (str pre	ong dark grey fine grained silty MESTONE with close to medium aced horizontal to vertical stepped and nar, rough and smooth clear ctures. LISWORTH LIMESTONE RMATION) return copied from 7.10m from revious sheet) . stiff clay with sandstone gravels		(6.20)	
- 10.50-12.00 [10.50-10.71		SPT	N:50 for 125mm	Ī						fror bgl	m 9.00m to 9.10m bgl. . beige brown from 9.20m to 9.40n		- - - - -	
11.15-11.25 11.15	9	D PID	0.0ppm	91	59	52				bgl.	beige brown from 11.20m to 13.00n	-	- - - - -	
_ - 12.00-13.50 - 12.00-12.11 - 12.13-12.35	8	SPT C	N:50 for 70mm	*	X	X	_					-	- - - - -	
-				87	67	53						106.30	13.30	
- 13.50-15.00 - 13.50-13.54 - 13.50 - 14.02-14.18	9	SPT PID C	N:50 for 30mm 0.0ppm	X	X	X	_			MU (RL	tremely strong dark grey silty IDSTONE. JTLAND FORMATION) band of stiff clay from 13.50m to 60m bgl.	' - - -	-(1.75)	
-				93	72	65				clos	band of stiff clay with horizonta sely spaced planar smooth clean and	ı t		
-14.90 -15.00-15.05 -15.00 -15.00	12 10	D SPT PID	N:50 for 36mm 0.0ppm	<u> </u>	*	*				clay	y infilled fractures from 14.600m to 65m bgl. Borehole termianted at 15.05m bgl.	104.55		
-												- - - -	- - -	

, ,	E	3oring Pro	gress and	Water Ob	servations	3			Co	noral	Remarks		
	Date	Time	Borehole		Borehole Diameter	Water			Ge	nerai	Remarks		
5			Depth	Depth	(mm)	Depth							
-													
5													
5													
וֹב בּוֹי													
2													
5		ı					Α	II dimens	sions in metre	es	Scale:	1:50	
	Method			Plan	t		•	Drilled		Logged		Checked 2	
	Used:	Rotar	y Cored	Use	d: Coma	cchio GEC	205	By:	DSUK LTD	Ву:	RSalama	By:	AGS

										DUKER			
Contract:							Cli	ent:			Boreho	ole:	
		Roa	de Bypass							Roxhill			BH04
Contract Re	f:		Start:	11.0	9.17	Grou	ınd L	evel:		National Grid Co-ordinate:	Sheet:		
3	3135	583	End:	13.0	9.17		1	15.7	1	E:474793.0 N:251226.6		1	of 3
Donth		Sample	s & Testing	N	Mecha	anical	Log	Fill &	ter		iced /el	Depth	Materia
Depth (m)	No	Туре	Results	TCR (%)	SCR (%)	RQD (%)	If (mm	Backfill & Instru-	Water	Description of Strata	Reduced	(Thick ness)	Graphic
- 1.00-1.45 - 1.00 - 1.00	1 1	SPT D PID	N=6 0.0ppm						7.77	Grass over dark brown slightly gravelly sandy CLAY with frequent roots and rootlets. Gravel is angular to subrounded fine to coarse quartzite (TOPSOIL) Firm orange brown slightly gravelly sandy CLAY. Gravel is angular to subrounded fine to coarse chalk, quartzite and flint. (GLACIAL TILL)	115.41	0.30	
2.00-2.45 2.00 2.00	2 2	SPT D PID	N=11 0.0ppm								- - - - - - - -	(3.70)	
3.00-3.45 3.00 3.00	3	SPT D PID	N=24 0.0ppm								- - - - - - - -		
4.00-5.00 4.00-4.31 4.00 4.00 4.50	4 4 5	SPT D PID D	N:50 for 160mm 0.0ppm	90	17 	12				Firm orange brown slightly gravelly sandy CLAY. Gravel is angular to subrounded fine to coarse chalk, quartzite and flint. (GLACIAL TILL) Medium strong to strong yellow orange	111.71		
5.00-6.50 5.00-5.41 5.00	5	SPT PID	N:50 for 255mm 0.0ppm	87	40	35				brown fine grained LIMESTONE with an occasional clayey matrix. Fractures are Extremely widely spaced dipping 25 - 45 degrees planar occasionally stepped smooth and clean. No staining noted on fractures. (WEATHERED BLISWORTH LIMESTONE FORMATION)	-	- - - - - - - - - - - - - - - - - - -	
6.50-8.00	6	SPT	N:50 for 60mm	85	64	53		· · · · · · · · · · · · · · · · · · ·	• • • • • • • • • • • • • • • • • • • •	weak from 5.50m to 5.90m bgl.	-	- - - - - - - - - - - - -	
- 8.00-9.50 - 8.00-8.30	6	С	N 50 (X	X	X			•	shell inclusions from 7.80m bgl.	107.41	8.30	
- 8.00-8.03 - 8.00	7	SPT PID	N:50 for 20mm 0.0ppm	91	79	79				Medium strong to strong dark grey fine grained LIMESTONE with shell inclusions. (WEATHERED BLUE LIAS	107.01	8.70	

E	Boring Progress and Water Observations													
Date	Time	Borehole Depth	Casing Depth	Borehole Diameter (mm)	Water Depth									
11/09/17 12/09/17 12/09/17		15.50 15.50 20.00	11.00 11.00 11.00	123 123 123	14.90 14.10 19.30									

GINT_LIBRARY_V8_06. GLB LibVersion: v8_06_018 PrjVersion: v8_06 - Core+Logs - 002 | Log COMPOSITE LOG - A4P | 313583 - ROADE BYPASS. GPJ - v8_06. RSK Environment Ltd, Abbey Park, Humber Road, Coventry, CV3 4AQ. Tel: 02476 505600, Fax: 02476 501417, Web: www.rsk.co.uk, | 10/11/17 - 14:49 | DM1 |

General Remarks

- 1. Location scanned with GPR prior to breaking ground. No services encountered.

- Hand dug inspection pit tp 1.20m bgl.
 Groundwater not encountered.
 Borehole backfilled with arisings upon completion.

1:50 All dimensions in metres Scale:

Drilled Method Plant Used: **Rotary Cored** Used: Comacchio GEO 205 **DSUK LTD**

Logged By: **MSouthworth**

											DUKEN	OLI		
Contract:							Client:					Boreho		
		Roa	de Bypass							Roxhill				BH04
Contract Re			Start:	11.0	9.17	Grou	und Level:			National Grid Co		Sheet:		
3	135	583	End:	13.0	9.17		115.7			E:474793.	0 N:251226.6		2	of 3
Depth (m)	No	Sample Type	s & Testing Results	TCR	SCR	anical RQD		Water		Description	ı of Strata	Reduced Level	Depth (Thick	Material Graphic Legend
(111)	INO	Type	Nesuits	(%)	(%)	(%)	(mm) 🛎 T E		FOR	RMATION)		<u> </u>	ness) (0.80)	Legend
-				91 Y	79 Y	79 Y			(BL FO	SWORTH RMATION)	LIMESTONE	106.21		
9.50-11.00 9.50 9.50-9.55	7	D SPT	N:50 for 30mm	1	1				brov	vn fine grained L	rong yellow orange IMESTONE with an atrix. Fractures are	105.71	(0.50)	× _ ×
9.50	Ü	PID	0.0ppm	85	73	68			35 t with	o 45 degrees ste occasional frac	epped smooth clean ctures infilled with	-	-	
-									(BL	tures. SWORTH	g identified upon LIMESTONE	- - -	- - -	
11.00-12.50				*	*	X			(stra	vious sheet)	rom 8.70m from		- - -	
11.00-11.05	9	SPI	N:50 for 40mm	ו					Stiff		grey silty CLAY with		(3.30)	
-				68	53	53				TLAND FORMAT		- - -	- - -	
- 12.00-12.35 - -	8	С							MU deg	DSTONE. Fract rees planar and	d stepped smooth ary wide and clean.	-	- - -	
12.50-14.00 12.50-12.95		SPT	N=44	A					(RU	TLAND FORMAT	TION) grey silty clay from	-	- - - -	
				47	36	36			bgl.	no recovery from	n 12.50m to 13.10m	102.41	13.30	x -x
-									CL/	Y with fre- relicts. Fractures	grey silty structured quent mudstone are 35 to 45 planar	-	- - -	xx
_ - 14.00-15.50 - 14.00	9	D		*	*	*			Ext	ooth occasionally emely wide and c TLAND FORMAT		-	- - -	×
14.00-14.39 14.00		SPT PID	N:50 for 241mm						(,		(2.70)	
- - - -			0.0ppm	68	61	55						-	- - -	×x
15.50-17.00				X	L X	L X						-	- - -	x x
15.50-17.00		SPT	N=47									99.71	16.00	X
16.10-16.20	10	С		93	77	77			plar and	DŠTONĚ. Fract	to Extremely wide	- - - - - - -	- - - - - - -	
- - 17.00-18.50 - 17.00-17.05		SPT	N:50 for 40mm	1 7	*	*						-	(2.10)	
- - - -				95	72	53						- - -	- - - -	

	Boring Pro	gress and	Water Ob	servations	3			Co	noral	Remarks		
Date	Time	Borehole Depth	Casing Depth	Borehole Diameter (mm)	Water Depth			Ge	IICIAI	Remarks		
						Δ	ll dimen	sions in metre	es.	Scale:	1:50	
Method Used:							Drilled By:	DSUK LTD	Logged By:	MSouthworth	Checked By:	AGS

Contract:								ent:			Boreho	le:	
		Road	de Bypass							Roxhill			BH04
Contract Re	f:		Start:	11.09	9.17	Grou	und Le	evel:		National Grid Co-ordinate:	Sheet:		
3	13	583	End:	13.09				15.7		E:474793.0 N:251226.6		3	of 3
Depth (m)	No	Sample Type	s & Testing Results	TCR (%)	Necha SCR (%)	anical RQD (%)	Log If (mm)	Backfill & Instru- mentation	Water	Description of Strata	Reduced Level	Depth (Thick ness)	Material Graphic Legend
18.50-20.00 18.50 18.50 18.50-18.77	11	D SPT PID	N:50 for 160mm 0.0ppm	95 ¥ 100	72 Y 80	53 \$ 80				Medium strong to strong dark grey fine grained MUDSTONE. Fractures are 25 to 35 planar smooth wide to Extremely wide and open. (RUTLAND FORMATION)	97.61	18.10	
19.50-19.90	12	С								becoming light grey from 19.50m bgl.			
- 20.00-20.10	15	SPT	N:50 for 60mm	*		*	_				95.26	20 45	

3													
ģ,	[Boring Pro	gress and	Water Ob	servation	3			Co	noral	Remarks		
	Date	Time	Borehole	Casing	Borehole Diameter	Water			Ge	leiai	Remarks		
	Date	Tille	Depth	Depth	(mm)	Depth							
,													
5													
Š													
3													
2													
2													
5							_ A	II dimens	sions in metre	s	Scale:	1:50	
	Method Plant							Drilled		Logged		Checked 2	
5	Used: Rotary Cored Used: Comacchio G						205	Ву:	DSUK LTD	By:	MSouthworth	By:	AGS

GINT_LIBRARY_V8_06.GLB LibVersion: v8_06_018 PŋVersion: v8_06 - Core+Logs - 002 | Log COMPOSITE LOG - A4P | 313583 - ROADE BYPASS.GPJ - v8_06. RSK Environment Ltd, Abbey Park, Humber Road, Coventry, CV3 4AQ. Tel: 02476 505600, Fax: 02476 501417, Web: www.rsk.co.uk | 10/11/17 - 14:49 | DM1 |

Used:

Contract:								ent:					Boreho		
		Roa	de Bypass								Roxhill				BH05
Contract Re	f:		Start:	07.09	9.17	Grou	und L	evel:			National Grid Co-ordinate:		Sheet:		
3	313	583	End:	08.09				01.7			E:475105.8 N:2507	62.3		1	of 3
Depth (m)	No	· ·	s & Testing Results	TCR (%)	Necha SCR (%)	anical RQD (%)	Log If (mm)	Backfill & Instru-mentation	Water		Description of Strata		Reduced Level	Depth (Thick ness)	Material Graphic Legend
-				(12)	(12)	(12)	(*****)	<u> </u>		suba flint, (TOF	n silty slightly sandy slightly on the silty slightly sand is fine to coarse. Go ingular to subrounded fine to quartzite and limestone.	ravel is coarse	101.46	0.30	1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2
1.00-1.45 1.00 1.30 1.30 1.70	1 1 2	SPT PID ES PID	N=30 0.0ppm 0.0ppm							orang grave Grave to co (GLA	to firm light grey mottled ge silty slightly sandy elly CLAY. Sand is fine to sel is subangular to subround arse quartzite, flint and limest CIAL TILL) stiff from 1.20m bgl.	slightly coarse. led fine	- - - - - - - -	(2.70)	
2.00-2.45	2	SPT D	N=22										- - - - - -	-	
2.70 2.70 3.00-3.45	3	PID SPT	0.0ppm N=27							sligh	stiff grey mottled orange ritly sandy CLAY. Sand is se.	ed silty fine to	98.76	(1.00)	* · · · · · · · · · · · · · · · · · · ·
3.70 _3.70	4	D PID	0.0ppm	_	_			П		Ctiff	brown red silty slightly sandy	CLAV	97.76 97.66	4.00 4.10	× · · ×
4.00-5.50 4.00-4.36	4	SPT	N:50 for 210mm							\(WE		ORTH	07.00	-	
- 4.50-4.60 - 4.50 	6	D PID	0.0ppm	97	63 	33				medi plana	ng orange LIMESTONE with our spaced horizontal to ar smooth tight partly open clean fractures.	vertical	-	- - - -	
5.20-5.50	5	С		y	y	L Y				(BLIS		STONE	-	(2.40)	
- 5.50-7.00 - 5.50-5.54 - - -	6	SPT	N:50 for 30mm	64	F0	12					notited light grey from 4.50m	bgi.	-	- - - - - -	
- - -				04	59 	13				Firm	grey silty CLAY with grave	l sized	95.26	6.50	xx
7.00-8.50 7.00-7.45	7	SPT	N=37	*	 	X	_			muds	stoné lithórelicts. FLAND FORMATION)		-	_(1.10)	x x
- - - - - -				85	76 	64			1 <u>\frac{1}{2}</u>	MUD	emely weak dark grey STONE. FLAND FORMATION)	black	94.16	7.60	xx
8.50-10.00 8.50-8.95	8 7	SPT	N=42	27	24	22	_		1	No re	ecovery from 8.50m to 9.50m	bgl.	93.26	8.50	ZCL

E	Boring Pro	gress and	Water Ob	servations	3	
Date	Time	Borehole Depth	Casing Depth	Borehole Diameter (mm)	Water Depth	1
07/09/17		14.00	11.50	N/R	Dry	
07/09/17		20.00	11.50	N/R	14.30	
1						

General Remarks

- 1. Location scanned with GPR prior to breaking ground. No services encountered.

- Hand dug inspection pit tp 1.20m bgl.
 Groundwater encountered at 9.00m bgl.
 Gas and groundwater monitoring well installed to 12.00m bgl upon completion.

Α	II dimensions in metre	s	Scale:	1:50

Method Used: **Rotary Cored**

GINT_LIBRARY_V8_06. GLB LibVersion: v8_06_018 PrjVersion: v8_06 - Core+Logs - 002 | Log COMPOSITE LOG - A4P | 313583 - ROADE BYPASS. GPJ - v8_06. RSK Environment Ltd, Abbey Park, Humber Road, Coventry, CV3 4AQ. Tel: 02476 505600, Fax: 02476 501417, Web: www.rsk.co.uk, | 10/11/17 - 14:49 | DM1 |

Plant Used: Comacchio GEO 205 Drilled Ву: **DSUK LTD** Logged By: **RSalama**

								۱									
Contract:								CI	ient:			D. 1.111			Boreho		D. 105
		Road	le Bypa					1				Roxhill					BH05
Contract Ref			St	tart: 07			Grou		evel:	_		National Grid Co			Sheet:		_
3	13	583	Eı	nd: 0 8	3.09				101.76			E:475105.	.8 N:2507	62.3		2	of 3
Depth (m)	No		s & Testing Result	T	CR (%)	lecha SCR	RQD	Log If	Backfill & Instrumentation	Water		Description	n of Strata		Reduced Level	Depth (Thick ness)	
9.40-9.50	8	D	0.0	2	27	24	22	(111111			(stra	recovery from 8.5 atum copied a vious sheet)	from 8.50m		92.16	9.60	ZCL
9.40		PID	0.0ppr	m			П					emely weak DSTONE.	dark grey	black	-	-	
10.00-10.45	9	SPT	N=28	—	V	<u> </u>	*	-			(RL Gre (RL	TLAND FORMA' y silty slightly clay TLAND FORMA' AMFORD MEMB	yey SAND. TION)	/	91.76	(1.50)	
11 50 13 50					_						11/0	ok grov cilty MLID	NETONIE	,	90.26 90.21/	11.50	
- 11.50-12.50 [11.50-11.95 -		SPT	N=42								∖(RL	ak grey silty MUD TLAND FORMA y stiff dark grey s	TION)		-	(0.55)	xx
-				7	70	55	10				\(RL	TLAND FÖRMA	TÍÓN)	/	89.66	12.10	×
12.30-12.40 12.50-14.00 12.50-12.95		C SPT	N=43		X	*	X	_			with med smo	y stiff weak gre horizontal to su dium spaced pl both and rough	ibhorizontal c lanar and s tight to oper	lose to tepped	- - - - -	-	
-				7	76 	52	39					clay infilled fracti TLAND FORMA			-	-	
13.70-16.50 13.70 14.00-15.50 14.00-14.45		D PID SPT	0.0ppr N=42		X	*	<u> </u>	-				. band of frim 95m to 14.03m bo		y from	-	- - - - -	
-					37	67	58								- - - - -	(4.90)	
- - - 15.50-17.00 - 15.50-15.95		SPT	N=46	_	X	*		-				. band of soft to n 15.00m to 15.20		Ity clay	-	-	
- 13.30-13.93 	13	361	N-40		00	87	62					. band of soft to 1 16.10m to 16.30		Ity clay	-	- - - - - - -	
- 17.00-18.50 17.00-17.39		SPT	N:50 fo 235mr	n	00	68	54	-			_size ∖(RU	y stiff grey silty d MUDSTONE li TLAND FORMA cription on next s	thorelicts. TION)	gravel	-	17.00	xx x

	Boring Pro	ogress and	Water Ob	servations	3			Co	noral	Domorko			
Date	Time	Borehole	Casing	Borehole Diameter	Water			Ge	nerai	Remarks			
		Depth	Depth	(mm)	Depth								
						A	II dimens	sions in metre	es	Scale:	1:50		
Method			Plan	t			Drilled		Logged		Checked	Tu 2	
Used:							Ву:	DSUK LTD	Ву:	RSalama	By:	WD	AGS

Contract:					CI	ient:				Вог	eho		
		Road	de Bypass						Roxhill				BH05
Contract Ref			Start:	07.09.17					National Grid Co-ordinate:		eet:		
3	13	583	End:	08.09.17		01.70			E:475105.8 N:2507			3	of 3
Depth (m)	No	Sample: Type	s & Testing Results	Mecha TCR SCR (%) (%)	RQD If (%)	Backfill & Instru- mentation	Water		Description of Strata	Reduced	Level	Depth (Thick ness)	Material Graphic Legend
18.50-20.00 18.50-18.94		SPT	N:50 for 285mm	100 68 7 7 60 20	54			spac close (RU (stra prev	ak grey silty MUDSTONE with ced, subhorizontal, planar sed fractures. TLAND FORMATION) stum copied from 17.30m ious sheet) grey silty CLAY. TLAND FORMATION)	closely smooth	76	19.00	XX
										82.	06	19.70	× _ ×
20.00-20.45	16	SPT	N=47	V	<u> </u>			with smo	emely weak grey silty MUDS closely to medium spaced oth partly open to open	STONE - planar - clean -		(0.75)	X X
								fract	ures horizontal to subhorizont TLAND FORMATION)	al. <u>81</u>	31	20.45	
									sorehole terminated at 20.45m	Dgi. []			

ξ.														
ממ,	E	Boring Pro	gress and	Water Ob	servations	3			Co	norol	Domorko			
5	Date	Time	Borehole	Casing	Borehole Diameter	Water			Ge	nerai	Remarks			
5	Date	Tillie	Depth	Depth	(mm)	Depth								
3														
5														
,														
7111														
5							Δ	II dimens	sions in metre	25	Scale:	1:50		
	Method			Plan	t t		· ·	Drilled	5,01,0 11,11,01,0	Logged	Coulc.	Checked	m. 0	
5	Used:	Rota	ry Cored	Use		acchio GEC	205	By:	DSUK LTD	By:	RSalama	By:	MP	AGS

APPENDIX F GROUND GAS MONITORING DATA

[Pressures]	<u>Previous</u>	<u>During</u>	Start_	<u>End</u>	Equipment Used & Remarks
Round 1 Round 2 Round 3 Round 4	- - -	Fluctuating Fluctuating Rising Fluctuating	1004 1001 1007 1002	1003 1003 1009 993	Weather: Cloudy + Ground: Wet + Wind: Light + Air Temp: 15DegC GA5000 + Dipmeter + Weather: Cloudy + Ground: Damp + Wind: Medium + Air Temp: 12DegC Weather: Clear + Ground: Dry + Wind: Light + Air Temp: 15DegC

Exploratory Position ID	Pipe ref	Pipe diameter (mm)	Monitoring Round	Reported Installation Depth (m)	Measured Installation Depth (mbgl)	Response Zone		Borehole Pressure (mb)		Gas Flow (l/hr)	Water Depth (mbgl)	Carbon Dioxide (% / vol)	Methane (% / vol)	Oxygen (% / vol)	LEL (%)	Carbon Monoxide (ppm)	Hydrogen Sulphide (ppm)
BH01	1	50	1	20.00		10.00 to 20.00	28/09/2017 09:05:00	1001	1001	-0.1 _(I)	-	-	-	-	-	-	-
BH01	1	50	1			10.00 to 20.00	30 secs	-	-	-0.1 _(SS)	-	-	-	-	-	-	-
BH01	1	50	1 (2)	20.00		10.00 to 20.00	28/09/2017 09:06:00	-	-	-	-	0.0	0.0	20.9	0.0	0	0
BH01	1	50	1 (2)			10.00 to 20.00	15 secs	-	-	-	-	0.1	0.0	21.0	0.0	1	0
BH01	1	50	1 (2)			10.00 to 20.00	30 secs	-	-	-	-	0.1	0.0	21.0	0.0	1	0
BH01	1	50	1 (2)			10.00 to 20.00	60 secs	-	-	-	-	0.1	0.0	21.0	0.0	1	0
BH01	1	50	1 (2)			10.00 to 20.00	90 secs	-	-	-	-	0.1	0.0	20.9	0.0	1	0
BH01	1	50	1 (2)			10.00 to 20.00	120 secs	-	-	-	-	0.1	0.0	21.0	0.0	1	0
BH01	1	50	1 (2)			10.00 to 20.00	180 secs	-	-	-	ı	0.1	0.0	21.0	0.0	1	0
BH01	1	50	1 (2)			10.00 to 20.00	240 secs	-	-	-	-	0.1	0.0	21.0	0.0	1	0
BH01	1	50	1 (2)			10.00 to 20.00	300 secs	-	-	-	-	0.1	0.0	20.9	0.0	1	0
BH01	1	50	1 (3)	20.00	19.62	10.00 to 20.00	28/09/2017 09:12:00	-	-	-	16.53	-	-	-	-	-	-
BH01	1	50	2	20.00		10.00 to 20.00	05/10/2017 09:52:00	1001	999	0.0 _(I)	-	-	-	-	-	-	-
BH01	1	50	2			10.00 to 20.00	30 secs	-	-	0.0 _(SS)	-	-	-	-	-	-	-
BH01	1	50	2 (2)	20.00		10.00 to 20.00	05/10/2017 09:53:00	-	-	-	-	0.0	0.0	20.9	0.0	0	0
BH01	1	50	2 (2)			10.00 to 20.00	15 secs	-	-	-	-	0.1	0.0	20.9	0.0	0	0
BH01	1	50	2 (2)			10.00 to 20.00	30 secs	-	-	-	-	0.1	0.0	20.9	0.0	0	0
BH01	1	50	2 (2)			10.00 to 20.00	60 secs	-	-	-	-	0.1	0.0	20.9	0.0	0	0

Key: I = Initial, P = Peak, SS = Steady State. Note: LEL = Lower Explosive Limit = 5% v/v.

RSK Environment Ltd Abbey Park Humber Road Coventry

CV3 4AQ

Compiled By	Date	Checked By	Date	Contract Re
Mostrowyer	26/10/17			
Contract:				Page:

Roade Bypass

1 of 48

313583

[Pressures] Previous During End Equipment Used & Remarks Start

Exploratory Position ID	Pipe ref	Pipe diameter (mm)	Monitoring Round	Reported Installation Depth (m)	Measured Installation Depth (mbgl)	Response Zone	Date & Time of Monitoring (elapsed time)	Borehole Pressure (mb)		Gas Flow (l/hr)	Water Depth (mbgl)	Carbon Dioxide (% / vol)	Methane (% / vol)	Oxygen (% / vol)	LEL (%)	Carbon Monoxide (ppm)	Hydrogen Sulphide (ppm)
BH01	1	50	2 (2)			10.00 to 20.00	90 secs	-	-	-	-	0.1	0.0	20.9	0.0	0	0
BH01	1	50	2 (2)			10.00 to 20.00	120 secs	-	-	=	-	0.1	0.0	20.9	0.0	0	0
BH01	1	50	2 (2)			10.00 to 20.00	180 secs	-	-	-	-	0.1	0.0	21.0	0.0	0	0
BH01	1	50	2 (2)			10.00 to 20.00	240 secs	-	-	-	-	0.1	0.0	21.0	0.0	0	0
BH01	1	50	2 (2)			10.00 to 20.00	300 secs	-	-	-	-	0.1	0.0	21.0	0.0	0	0
BH01	1	50	2 (3)	20.00	19.50	10.00 to 20.00	05/10/2017 09:59:00	-	-	-	17.17	-	-	-	-	-	-
BH01	1	50	3	20.00		10.00 to 20.00	13/10/2017 09:55:00	-	-	0.0 _(I)	-	-	-	-	-	-	-
BH01	1	50	3			10.00 to 20.00	30 secs	-	-	0.0 _(SS)	-	-	-	-	-	-	-
BH01	1	50	3 (2)	20.00		10.00 to 20.00	13/10/2017 09:56:00	-	-	-	-	0.1	0.0	20.9	-	0	0
BH01	1	50	3 (2)			10.00 to 20.00	60 secs	-	-	-	-	0.1	0.0	20.9	-	0	0
BH01	1	50	3 (2)			10.00 to 20.00	90 secs	-	-	-	-	0.1	0.0	20.9	=	0	0
BH01	1	50	3 (2)			10.00 to 20.00	120 secs	-	-	-	-	0.1	0.0	20.9	-	0	0
BH01	1	50	3 (2)			10.00 to 20.00	150 secs	-	-	-	-	0.1	0.0	20.9	-	0	0
BH01	1	50	3 (2)			10.00 to 20.00	240 secs	-	-	-	-	0.1	0.0	20.9	-	0	0
BH01	1	50	3 (2)			10.00 to 20.00	255 secs	-	-	-	-	0.1	0.0	20.9	-	0	0
BH01	1	50	3 (2)			10.00 to 20.00	270 secs	-	-	-	-	0.1	0.0	20.9	-	0	0
BH01	1	50	3 (3)	20.00	19.50	10.00 to 20.00	13/10/2017 10:00:45	-	-	-	17.37	-	-	-	-	-	-
BH01	1	50	4	20.00		10.00 to 20.00	19/10/2017 10:21:00	-	-	0.2 _(I)	-	-	-	-	-	-	-

Key: I = Initial, P = Peak, SS = Steady State. Note: LEL = Lower Explosive Limit = 5% v/v.

RSK Environment Abbey Park Humber Road Coventry CV3 4AQ

t	Ltd	
۰	Ltu	
		(

Compiled By
Mostrowije
Contract:

Date 26/10/17

Roade Bypass

Checked By

Date

Contract Ref: 313583

Page:

[Pressures] Previous During End Equipment Used & Remarks Start

Exploratory Position ID	Pipe ref	Pipe diameter (mm)	Monitoring Round	Reported Installation Depth (m)	Measured Installation Depth (mbgl)	Response Zone	Date & Time of Monitoring (elapsed time)	Borehole Pressure (mb)		Gas Flow (l/hr)	Water Depth (mbgl)	Carbon Dioxide (% / vol)	Methane (% / vol)	Oxygen (% / vol)	LEL (%)	Carbon Monoxide (ppm)	Hydrogen Sulphide (ppm)
BH01	1	50	4			10.00 to 20.00	15 secs	-	-	0.1 _(SS)	-	-	-	-	-	-	-
BH01	1	50	4 (2)	20.00		10.00 to 20.00	19/10/2017 10:21:30	-	-	-	-	0.1	0.0	20.9	-	0	0
BH01	1	50	4 (2)			10.00 to 20.00	30 secs	-	-	-	-	0.2	0.0	20.7	-	0	0
BH01	1	50	4 (2)			10.00 to 20.00	90 secs	-	-	-	-	0.1	0.0	20.7	-	0	0
BH01	1	50	4 (2)			10.00 to 20.00	120 secs	-	-	-	-	0.1	0.0	20.8	-	0	0
BH01	1	50	4 (2)			10.00 to 20.00	150 secs	-	-	-	-	0.1	0.0	20.8	-	0	0
BH01	1	50	4 (2)			10.00 to 20.00	180 secs	-	-	-	-	0.1	0.0	20.8	-	0	0
BH01	1	50	4 (2)			10.00 to 20.00	210 secs	-	-	-	-	0.1	0.0	20.8	-	0	0
BH01	1	50	4 (2)			10.00 to 20.00	270 secs	-	-	-	-	0.1	0.0	20.8	-	0	0
BH01	1	50	4 (2)			10.00 to 20.00	330 secs	-	-	-	-	0.1	0.0	20.8	-	0	0
BH01	1	50	4 (3)	20.00	19.50	10.00 to 20.00	19/10/2017 10:32:00	-	-	-	17.45	-	-	-	-	-	-
BH02	1	50	1	30.00		20.00 to 30.00	28/09/2017	1003	1003	0.0 _(I)	-	-	-	-	-	-	-
BH02	1	50	1			20.00 to 30.00	30 secs	-	-	0.0 _(SS)	-	-	-	-	-	-	-
BH02	1	50	1 (2)	30.00		20.00 to 30.00	28/09/2017 00:01:00	-	-	-	-	0.0	0.0	20.9	0.0	0	0
BH02	1	50	1 (2)			20.00 to 30.00	15 secs	-	-	-	-	0.2	0.0	20.6	0.0	1	0
BH02	1	50	1 (2)			20.00 to 30.00	30 secs	-	-	-	-	0.1	0.0	20.4	0.0	1	0
BH02	1	50	1 (2)			20.00 to 30.00	60 secs	-	-	-	-	0.1	0.0	20.4	0.0	2	0

Key: I = Initial, P = Peak, SS = Steady State. Note: LEL = Lower Explosive Limit = 5% v/v.

RSK Environment Ltd Abbey Park Humber Road Coventry CV3 4AQ

Compiled By
Mostrowija
Contract:

Date 26/10/17

Roade Bypass

Checked By

Date

313583

Page:

Contract Ref:

[Pressures] Previous During Start End Equipment Used & Remarks

Exploratory Position ID	Pipe ref	Pipe diameter (mm)	Monitoring Round	Reported Installation Depth (m)	Measured Installation Depth (mbgl)	Response Zone	Date & Time of Monitoring (elapsed time)	Borehole Pressure (mb)		Gas Flow (I/hr)	Water Depth (mbgl)	Carbon Dioxide (% / vol)	Methane (% / vol)	Oxygen (% / vol)	LEL (%)	Carbon Monoxide (ppm)	Hydrogen Sulphide (ppm)
BH02	1	50	1 (2)			20.00 to 30.00	90 secs	-	-	-	-	0.1	0.0	20.3	0.0	2	0
BH02	1	50	1 (2)			20.00 to 30.00	120 secs	-	-	=	-	0.1	0.0	20.3	0.0	2	0
BH02	1	50	1 (2)			20.00 to 30.00	180 secs	-	-	-	-	0.1	0.0	20.2	0.0	2	0
BH02	1	50	1 (2)			20.00 to 30.00	240 secs	-	-	-	-	0.1	0.0	20.2	0.0	2	0
BH02	1	50	1 (2)			20.00 to 30.00	300 secs	-	-	-	-	0.1	0.0	20.1	0.0	2	0
BH02	1	50	1 (3)	30.00	29.10	20.00 to 30.00	28/09/2017 00:07:00	-	-	-	20.21	-	-	-	-	-	-
BH02	1	50	2	30.00		20.00 to 30.00	05/10/2017 09:00:00	1003	1003	0.0 _(I)	-	-	-	-	-	-	-
BH02	1	50	2			20.00 to 30.00	30 secs	-	-	0.0 _(SS)	-	-	-	-	-	-	-
BH02	1	50	2 (2)	30.00		20.00 to 30.00	05/10/2017 09:01:00	-	-	-	-	0.0	0.0	20.9	0.0	0	0
BH02	1	50	2 (2)			20.00 to 30.00	15 secs	-	-	-	-	0.1	0.0	20.6	0.0	1	0
BH02	1	50	2 (2)			20.00 to 30.00	30 secs	-	-	-	-	0.1	0.0	20.4	0.0	1	0
BH02	1	50	2 (2)			20.00 to 30.00	60 secs	-	-	-	-	0.1	0.0	20.4	0.0	1	0
BH02	1	50	2 (2)			20.00 to 30.00	90 secs	-	-	-	-	0.1	0.0	20.4	0.0	1	0
BH02	1	50	2 (2)			20.00 to 30.00	120 secs	-	-	-	-	0.1	0.0	20.4	0.0	1	0
BH02	1	50	2 (2)			20.00 to 30.00	180 secs	-	-	-	-	0.1	0.0	20.3	0.0	1	0
BH02	1	50	2 (2)			20.00 to 30.00	240 secs	-	-	-	-	0.1	0.0	20.2	0.0	1	0
BH02	1	50	2 (2)			20.00 to 30.00	300 secs	-	-	-	-	0.1	0.0	20.2	0.0	1	0
BH02	1	50	2 (3)	30.00	29.02	20.00 to 30.00	05/10/2017 09:07:00	-	-	-	20.15	_	-	-	-	_	-

Key: I = Initial, P = Peak, SS = Steady State. Note: LEL = Lower Explosive Limit = 5% v/v.

RSK

RSK Environment Ltd Abbey Park Humber Road Coventry CV3 4AQ

td	
ıu	۲
	Contract:

Compiled By

Date **26/10/17**

Roade Bypass

Checked By

Date

313583

Page:

Contract Ref:

[Pressures] Previous During End Equipment Used & Remarks Start

Exploratory Position ID	Pipe ref	Pipe diameter (mm)	Monitoring Round	Reported Installation Depth (m)	Measured Installation Depth (mbgl)	Response Zone	Date & Time of Monitoring (elapsed time)	Borehole Pressure (mb)		Gas Flow (I/hr)	Water Depth (mbgl)	Carbon Dioxide (% / vol)	Methane (% / vol)	Oxygen (% / vol)	LEL (%)	Carbon Monoxide (ppm)	Hydrogen Sulphide (ppm)
BH02	1	50	3	30.00		20.00 to 30.00	13/10/2017 09:45:00	1007	1007	0.1 _(I)	-	-	-	-	-	-	-
BH02	1	50	3			20.00 to 30.00	30 secs	-	-	0.1 _(SS)	-	-	-	-	-	-	-
BH02	1	50	3 (2)	30.00		20.00 to 30.00	13/10/2017 09:46:00	-	-	-	-	0.0	0.0	20.9	0.0	0	0
BH02	1	50	3 (2)			20.00 to 30.00	15 secs	-	-	-	-	0.4	0.0	19.5	0.0	1	0
BH02	1	50	3 (2)			20.00 to 30.00	30 secs	-	-	-	-	0.4	0.0	18.2	0.0	1	0
BH02	1	50	3 (2)			20.00 to 30.00	60 secs	-	-	-	-	0.4	0.0	18.4	0.0	1	0
BH02	1	50	3 (2)			20.00 to 30.00	93 secs	-	-	-	-	0.4	0.0	18.7	0.0	1	0
BH02	1	50	3 (2)			20.00 to 30.00	120 secs	-	-	-	-	0.4	0.0	18.8	0.0	1	0
BH02	1	50	3 (2)			20.00 to 30.00	180 secs	-	-	-	-	0.3	0.0	19.4	0.0	1	0
BH02	1	50	3 (2)			20.00 to 30.00	240 secs	-	-	-	-	0.2	0.0	19.7	0.0	1	0
BH02	1	50	3 (2)			20.00 to 30.00	300 secs	-	-	-	-	0.2	0.0	20.0	0.0	1	0
BH02	1	50	3 (3)	30.00	28.90	20.00 to 30.00	13/10/2017 09:52:00	-	-	-	20.15	-	-	-	-	-	-
BH02	1	50	4	30.00		20.00 to 30.00	19/10/2017 09:58:00	993	993	0.0 _(I)	-	-	-	-	-	-	-
BH02	1	50	4			20.00 to 30.00	15 secs	-	-	0.0 _(SS)	-	-	-	-	-	-	-
BH02	1	50	4 (2)	30.00		20.00 to 30.00	19/10/2017 09:58:30	-	-	-	-	0.1	0.0	20.1	-	0	0
BH02	1	50	4 (2)			20.00 to 30.00	30 secs	-	-	-	-	0.3	0.0	19.7	-	0	0
BH02	1	50	4 (2)			20.00 to 30.00	60 secs	-	-	-	-	0.4	0.0	16.9	-	0	0
BH02	1	50	4 (2)			20.00 to 30.00	90 secs	_	_	-	_	0.3	0.0	16.8	-	0	0

Key: I = Initial, P = Peak, SS = Steady State. Note: LEL = Lower Explosive Limit = 5% v/v.

RSK Environment Ltd Abbey Park Humber Road Coventry CV3 4AQ

Ы	
ıu	n
	Contract:

Compiled By	_
Mostrewije	

Date

26/10/17

Roade Bypass

Checked By

Contract Ref: Date

313583

Page:

[Pressures] Previous During Start End Equipment Used & Remarks

Exploratory Position ID	Pipe ref	Pipe diameter (mm)	Monitoring Round	Reported Installation Depth (m)	Measured Installation Depth (mbgl)	Response Zone	Date & Time of Monitoring (elapsed time)	Borehole Pressure (mb)		Gas Flow (I/hr)	Water Depth (mbgl)	Carbon Dioxide (% / vol)	Methane (% / vol)	Oxygen (% / vol)	LEL (%)	Carbon Monoxide (ppm)	Hydrogen Sulphide (ppm)
BH02	1	50	4 (2)			20.00 to 30.00	120 secs	-	-	-	-	0.3	0.0	17.8	-	0	0
BH02	1	50	4 (2)			20.00 to 30.00	150 secs	-	-	-	-	0.3	0.0	18.0	-	0	0
BH02	1	50	4 (2)			20.00 to 30.00	210 secs	-	-	-	-	0.3	0.0	18.2	-	0	0
BH02	1	50	4 (2)			20.00 to 30.00	270 secs	-	-	-	-	0.3	0.0	18.5	-	0	0
BH02	1	50	4 (2)			20.00 to 30.00	330 secs	-	-	-	-	0.2	0.0	18.7	-	0	0
BH02	1	50	4 (3)	30.00	28.85	20.00 to 30.00	19/10/2017 10:07:00	-	-	-	20.12	-	-	-	-	-	-
BH03	1	50	1	15.00		8.00 to 15.00	28/09/2017 10:11:00	1004	1004	0.0 _(I)	-	-	ı	-	-	-	-
BH03	1	50	1			8.00 to 15.00	30 secs	-	-	0.0 _(SS)	-	-	ı	-	-	-	-
BH03	1	50	1 (2)	15.00		8.00 to 15.00	28/09/2017 10:12:00	-	-	-	-	0.0	0.0	20.9	0.0	0	0
BH03	1	50	1 (2)			8.00 to 15.00	15 secs	-	-	-	-	0.2	0.0	20.2	0.0	10	0
BH03	1	50	1 (2)			8.00 to 15.00	30 secs	-	-	-	-	0.3	0.0	19.1	0.0	10	0
BH03	1	50	1 (2)			8.00 to 15.00	60 secs	-	-	-	-	0.3	0.0	19.0	0.0	10	0
BH03	1	50	1 (2)			8.00 to 15.00	90 secs	-	-	-	-	0.3	0.0	19.0	0.0	9	0
BH03	1	50	1 (2)			8.00 to 15.00	120 secs	-	-	-	-	0.3	0.0	19.0	0.0	9	0
BH03	1	50	1 (2)			8.00 to 15.00	180 secs	-	-	-	-	0.3	0.0	19.0	0.0	9	0
BH03	1	50	1 (2)			8.00 to 15.00	240 secs	-	-	-	-	0.3	0.0	19.0	0.0	9	0
BH03	1	50	1 (2)			8.00 to 15.00	300 secs	-	-	1	-	0.3	0.0	19.0	0.0	9	0

Key: I = Initial, P = Peak, SS = Steady State. Note: LEL = Lower Explosive Limit = 5% v/v.

RSK Environment Ltd Abbey Park Humber Road Coventry CV3 4AQ

Compile
Mostreu
Contract:

_	 110-10-90
	Mostrowser
	Complied By

Date 26/10/17

Roade Bypass

Checked By

Date

313583

Page:

Contract Ref:

[Pressures] Previous During End Equipment Used & Remarks Start

Exploratory Position ID	Pipe ref	Pipe diameter (mm)	Monitoring Round	Reported Installation Depth (m)	Measured Installation Depth (mbgl)	Response Zone	Date & Time of Monitoring (elapsed time)	Borehole Pressure (mb)		Gas Flow (I/hr)	Water Depth (mbgl)	Carbon Dioxide (% / vol)	Methane (% / vol)	Oxygen (% / vol)	LEL (%)	Carbon Monoxide (ppm)	Hydrogen Sulphide (ppm)
BH03	1	50	1 (3)	15.00	14.34	8.00 to 15.00	28/09/2017 10:18:00	-	-	-	12.33	-	-	-	-	-	-
BH03	1	50	2	15.00		8.00 to 15.00	06/10/2017 10:41:00	1001	1001	0.0 _(I)	-	-	-	-	-	-	-
BH03	1	50	2			8.00 to 15.00	30 secs	-	-	0.0 _(SS)	-	-	-	-	-	-	-
BH03	1	50	2 (2)	15.00		8.00 to 15.00	06/10/2017 10:42:00	-	-	=	-	0.0	0.0	20.9	0.0	0	0
BH03	1	50	2 (2)			8.00 to 15.00	15 secs	-	-	-	-	0.6	0.0	20.5	0.0	2	0
BH03	1	50	2 (2)			8.00 to 15.00	30 secs	-	-	-	-	0.6	0.0	20.2	0.0	2	0
BH03	1	50	2 (2)			8.00 to 15.00	60 secs	-	-	-	-	0.6	0.0	20.1	0.0	2	0
BH03	1	50	2 (2)			8.00 to 15.00	90 secs	-	-	-	-	0.6	0.0	20.1	0.0	2	0
BH03	1	50	2 (2)			8.00 to 15.00	120 secs	-	-	-	-	0.6	0.0	20.1	0.0	1	0
BH03	1	50	2 (2)			8.00 to 15.00	180 secs	-	-	-	-	0.6	0.0	20.0	0.0	1	0
BH03	1	50	2 (2)			8.00 to 15.00	240 secs	-	-	-	-	0.6	0.0	20.0	0.0	1	0
BH03	1	50	2 (2)			8.00 to 15.00	300 secs	-	-	-	-	0.6	0.0	20.0	0.0	1	0
BH03	1	50	2 (3)	15.00	14.25	8.00 to 15.00	06/10/2017 10:48:00	-	-	-	12.38	-	-	-	-	-	-
BH03	1	50	3	15.00		8.00 to 15.00	13/10/2017 10:25:00	-	-	0.0 _(I)	-	-	-	-	-	-	-
BH03	1	50	3			8.00 to 15.00	30 secs	-		0.1 _(SS)	-	-	-		-	-	-
BH03	1	50	3			8.00 to 15.00	60 secs	-	-	-	-	0.1	0.0	20.9	-	0	0
BH03	1	50	3			8.00 to 15.00	180 secs	-	-	-	-	0.2	0.0	20.8	-	0	0
BH03	1	50	3			8.00 to 15.00	210 secs	-	-	-	-	0.2	0.0	20.7	-	0	0

Key: I = Initial, P = Peak, SS = Steady State. Note: LEL = Lower Explosive Limit = 5% v/v.

RSK Environment Ltd Abbey Park Humber Road Coventry CV3 4AQ

Compiled By
Mostrewije
^ ' '

Date 26/10/17 Checked By

Date

Contract Ref:

Page:

313583

Contract:

Roade Bypass

[Pressures] Previous During Start End Equipment Used & Remarks

Exploratory Position ID	Pipe ref	Pipe diameter (mm)	Monitoring Round	Reported Installation Depth (m)	Measured Installation Depth (mbgl)	Response Zone	Date & Time of Monitoring (elapsed time)	Borehole Pressure (mb)		Gas Flow (l/hr)	Water Depth (mbgl)	Carbon Dioxide (% / vol)	Methane (% / vol)	Oxygen (% / vol)	LEL (%)	Carbon Monoxide (ppm)	Hydrogen Sulphide (ppm)
BH03	1	50	3			8.00 to 15.00	225 secs	-	-	-	-	0.2	0.0	20.7	-	0	0
BH03	1	50	3			8.00 to 15.00	240 secs	-	-	-	-	0.2	0.0	20.6	-	0	0
BH03	1	50	3			8.00 to 15.00	270 secs	-	-	-	-	0.2	0.0	20.6	-	0	0
BH03	1	50	3			8.00 to 15.00	300 secs	-	-	-	-	0.2	0.0	20.6	-	0	0
BH03	1	50	3			8.00 to 15.00	360 secs	-	-	-	-	0.3	0.0	20.5	-	0	0
BH03	1	50	3			8.00 to 15.00	420 secs	-	-	-	-	0.3	0.0	20.4	-	0	0
BH03	1	50	3			8.00 to 15.00	480 secs	-	-	-	-	0.1	0.0	20.6	-	0	0
BH03	1	50	3		14.30	8.00 to 15.00	540 secs	-	-	-	12.55	-	-	-	-	-	-
BH03	1	50	4	15.00		8.00 to 15.00	18/10/2017 10:29:00	1002	1002	0.0(1)	ı	-	ı	-	-	-	-
BH03	1	50	4			8.00 to 15.00	30 secs	-	-	0.0 _(SS)	ı	-	ı	-	-	-	-
BH03	1	50	4 (2)	15.00		8.00 to 15.00	18/10/2017 10:30:00	-	-	-	ı	0.1	0.0	20.9	-	0	0
BH03	1	50	4 (2)			8.00 to 15.00	60 secs	-	-	-	ı	0.3	0.0	20.9	-	0	0
BH03	1	50	4 (2)			8.00 to 15.00	90 secs	-	-	-	-	0.3	0.0	20.8	-	0	0
BH03	1	50	4 (2)			8.00 to 15.00	105 secs	-	-	-	-	0.3	0.0	20.8	-	0	0
BH03	1	50	4 (2)			8.00 to 15.00	120 secs	-	-	-	-	0.3	0.0	20.8	-	0	0
BH03	1	50	4 (2)			8.00 to 15.00	150 secs	-	-	-	-	0.3	0.0	20.8	-	0	0
BH03	1	50	4 (2)			8.00 to 15.00	180 secs	-	-	-	-	0.3	0.0	20.8	-	0	0
BH03	1	50	4 (2)			8.00 to 15.00	240 secs	-	-	-		0.3	0.0	20.8	-	0	0

Key: I = Initial, P = Peak, SS = Steady State. Note: LEL = Lower Explosive Limit = 5% v/v.

RSK

RSK Environment Ltd Abbey Park Humber Road Coventry CV3 4AQ

.td	
	Contract

Compiled By	
MDStrewije/	-

Date **26/10/17**

Che

Checked By

Date

313583

Contract Ref:

Page:

Roade Bypass

[Pressures] Previous During Start End Equipment Used & Remarks

Exploratory Position ID	Pipe ref	Pipe diameter (mm)	Monitoring Round	Reported Installation Depth (m)	Measured Installation Depth (mbgl)	Response Zone	Date & Time of Monitoring (elapsed time)	Borehole Pressure (mb)		Gas Flow (l/hr)	Water Depth (mbgl)	Carbon Dioxide (% / vol)	Methane (% / vol)	Oxygen (% / vol)	LEL (%)	Carbon Monoxide (ppm)	Hydrogen Sulphide (ppm)
BH03	1	50	4 (2)			8.00 to 15.00	300 secs	-	-	-	-	0.3	0.0	20.8	-	0	0
BH03	1	50	4 (3)	15.00	14.25	8.00 to 15.00	18/10/2017 10:40:00	-	-	-	12.56	-	-	-	-	-	-
BH04	1	50	1	11.00		7.00 to 11.00	28/09/2017 12:48:00	1004	1004	0.0 _(I)	-	-	-	-	-	-	-
BH04	1	50	1			7.00 to 11.00	30 secs	-	-	0.0 _(SS)	-	-	-	-	-	-	-
BH04	1	50	1 (2)	11.00		7.00 to 11.00	28/09/2017 12:49:00	-	-	-	-	0.0	0.0	20.9	0.0	0	0
BH04	1	50	1 (2)			7.00 to 11.00	15 secs	-	-	-	-	0.1	0.0	20.7	0.0	0	0
BH04	1	50	1 (2)			7.00 to 11.00	30 secs	-	-	-	-	0.1	0.0	20.7	0.0	0	0
BH04	1	50	1 (2)			7.00 to 11.00	60 secs	-	-	-	-	0.1	0.0	20.7	0.0	0	0
BH04	1	50	1 (2)			7.00 to 11.00	90 secs	-	-	-	-	0.1	0.0	20.6	0.0	0	0
BH04	1	50	1 (2)			7.00 to 11.00	120 secs	-	-	-	-	0.1	0.0	20.6	0.0	0	0
BH04	1	50	1 (2)			7.00 to 11.00	180 secs	-	-	-	-	0.1	0.0	20.6	0.0	0	0
BH04	1	50	1 (2)			7.00 to 11.00	240 secs	-	-	-	-	0.1	0.0	20.5	0.0	0	0
BH04	1	50	1 (2)			7.00 to 11.00	300 secs	-	-	-	-	0.1	0.0	20.5	0.0	0	0
BH04	1	50	1 (3)	11.00	11.00	7.00 to 11.00	28/09/2017 12:55:00	-	-	-	10.12	-	-	-	-	-	-
BH04	1	50	2	11.00		7.00 to 11.00	06/10/2017 13:05:00	1003	1003	-0.1 _(I)	-	-	-	-	-	-	-
BH04	1	50	2			7.00 to 11.00	30 secs	-	-	-0.1 _(SS)	-	-	-	-	-	-	-
BH04	1	50	2 (2)	11.00		7.00 to 11.00	06/10/2017 13:06:00	-	-	-	-	0.0	0.0	20.9	0.0	0	0

Key: I = Initial, P = Peak, SS = Steady State. Note: LEL = Lower Explosive Limit = 5% v/v.

RSK Environment Ltd Abbey Park Humber Road Coventry CV3 4AQ

Compile
Mostro
Contract:

Complied By
Mostrowije

Date 26/10/17

Roade Bypass

Checked By

Date

313583

Page:

Contract Ref:

[Pressures] Previous During End Equipment Used & Remarks Start

Exploratory Position ID	Pipe ref	Pipe diameter (mm)	Monitoring Round	Reported Installation Depth (m)	Measured Installation Depth (mbgl)	Response Zone	Date & Time of Monitoring (elapsed time)	Borehole Pressure (mb)		Gas Flow (l/hr)	Water Depth (mbgl)	Carbon Dioxide (% / vol)	Methane (% / vol)	Oxygen (% / vol)	LEL (%)	Carbon Monoxide (ppm)	Hydrogen Sulphide (ppm)
BH04	1	50	2 (2)			7.00 to 11.00	15 secs	-	-	-	-	0.8	0.0	20.2	0.0	0	0
BH04	1	50	2 (2)			7.00 to 11.00	30 secs	-	-	-	-	0.8	0.0	20.1	0.0	0	0
BH04	1	50	2 (2)			7.00 to 11.00	60 secs	-	-	=	-	0.9	0.0	20.0	0.0	0	0
BH04	1	50	2 (2)			7.00 to 11.00	90 secs	-	-	-	-	0.9	0.0	20.0	0.0	0	0
BH04	1	50	2 (2)			7.00 to 11.00	120 secs	-	-	-	-	0.9	0.0	20.0	0.0	0	0
BH04	1	50	2 (2)			7.00 to 11.00	180 secs	-	-	-	-	0.9	0.0	20.0	0.0	0	0
BH04	1	50	2 (2)			7.00 to 11.00	240 secs	-	-	-	-	0.9	0.0	20.0	0.0	0	0
BH04	1	50	2 (2)			7.00 to 11.00	300 secs	-	-	-	-	0.9	0.0	20.0	0.0	0	0
BH04	1	50	2 (3)	11.00	10.87	7.00 to 11.00	06/10/2017 13:12:00	-	-	-	9.92	-	-	-	-	-	-
BH04	1	50	3	11.00		7.00 to 11.00	13/10/2017 12:37:00	1010	1010	0.0 _(I)	-	-	-	-	-	-	-
BH04	1	50	3			7.00 to 11.00	15 secs	-	-	0.0 _(SS)	-	-	-	-	-	-	-
BH04	1	50	3 (2)	11.00		7.00 to 11.00	13/10/2017 12:37:30	-	-	-	-	0.1	0.0	20.9	-	0	0
BH04	1	50	3 (2)			7.00 to 11.00	30 secs	-	-	-	-	0.1	0.0	20.9	-	0	0
BH04	1	50	3 (2)			7.00 to 11.00	60 secs	-	-	-	-	0.1	0.0	20.9	-	0	0
BH04	1	50	3 (2)			7.00 to 11.00	90 secs	-	-	-	-	0.1	0.0	20.9	-	0	0
BH04	1	50	3 (2)			7.00 to 11.00	120 secs	-	-	-	-	0.1	0.0	20.9	-	0	0
BH04	1	50	3 (2)			7.00 to 11.00	150 secs	-	-	-	-	0.1	0.0	20.9	=	0	0
BH04	1	50	3 (2)			7.00 to 11.00	210 secs	-	-	-	_	0.1	0.0	20.9	-	0	0

Key: I = Initial, P = Peak, SS = Steady State. Note: LEL = Lower Explosive Limit = 5% v/v.

RSK Environment Ltd Abbey Park Humber Road Coventry CV3 4AQ

Compi
Mostro
Contract:

	Compiled By
	Mostrowije
_	

Date 26/10/17 Checked By

Date

Contract Ref:

313583

Page:

Roade Bypass

[Pressures] Previous During Start End Equipment Used & Remarks

Exploratory Position ID	Pipe ref	Pipe diameter (mm)	Monitoring Round	Reported Installation Depth (m)	Measured Installation Depth (mbgl)	Response Zone	Date & Time of Monitoring (elapsed time)	Borehole Pressure (mb)		Gas Flow (l/hr)	Water Depth (mbgl)	Carbon Dioxide (% / vol)	Methane (% / vol)	Oxygen (% / vol)	LEL (%)	Carbon Monoxide (ppm)	Hydrogen Sulphide (ppm)
BH04	1	50	3 (2)			7.00 to 11.00	270 secs	-	-	-	-	0.1	0.0	20.9	-	0	0
BH04	1	50	3 (2)			7.00 to 11.00	330 secs	-	-	-	-	0.1	0.0	20.9	-	0	0
BH04	1	50	3 (2)			7.00 to 11.00	345 secs	-	-	-	-	0.1	0.0	20.9	-	0	0
BH04	1	50	3 (2)			7.00 to 11.00	360 secs	-	-	-	-	0.1	0.0	20.9	-	0	0
BH04	1	50	3 (2)			7.00 to 11.00	390 secs	-	-	-	-	0.1	0.0	20.9	-	0	0
BH04	1	50	3 (2)			7.00 to 11.00	450 secs	-	-	-	-	0.1	0.0	20.9	-	0	0
BH04	1	50	3 (2)			7.00 to 11.00	480 secs	-	-	-	-	0.1	0.0	20.9	-	0	0
BH04	1	50	3 (3)	11.00	9.44	7.00 to 11.00	13/10/2017 12:47:00	-	-	-	9.44	-	-	-	=	-	-
BH04	1	50	4	11.00		7.00 to 11.00	19/10/2017 12:27:00	993	993	0.0(1)	-	-	-	-	-	-	-
BH04	1	50	4			7.00 to 11.00	30 secs	-	-	0.0 _(SS)	-	-	-	-	-	-	-
BH04	1	50	4 (2)	11.00		7.00 to 11.00	19/10/2017 12:28:00	-	-	-	-	0.1	0.0	20.9	=	0	0
BH04	1	50	4 (2)			7.00 to 11.00	60 secs	-	-	-	-	0.3	0.0	20.8	-	0	0
BH04	1	50	4 (2)			7.00 to 11.00	90 secs	-	-	-	-	0.3	0.0	20.6	-	0	0
BH04	1	50	4 (2)			7.00 to 11.00	105 secs	-	-	-	-	0.3	0.0	20.6	-	0	0
BH04	1	50	4 (2)			7.00 to 11.00	120 secs	-	-	-	-	0.3	0.0	20.6	-	0	0
BH04	1	50	4 (2)			7.00 to 11.00	150 secs	-	-	-	-	0.3	0.0	20.6	-	0	0
BH04	1	50	4 (2)			7.00 to 11.00	180 secs	-	-	-	-	0.3	0.0	20.6	=	0	0
BH04	1	50	4 (2)			7.00 to 11.00	240 secs	-	-	-	-	0.3	0.0	20.6	-	0	0

Key: I = Initial, P = Peak, SS = Steady State. Note: LEL = Lower Explosive Limit = 5% v/v.

RSK Environment Ltd Abbey Park Humber Road Coventry CV3 4AQ

4	Cor
J	MDSt
	Contract:

Compiled By	
Mostrouse	
0 1 1	

Date 26/10/17

Roade Bypass

Checked By

Date

313583

Page:

Contract Ref:

[Pressures] Previous During End Equipment Used & Remarks Start

Exploratory Position ID	Pipe ref	Pipe diameter (mm)	Monitoring Round	Reported Installation Depth (m)	Measured Installation Depth (mbgl)	Response Zone	Date & Time of Monitoring (elapsed time)	Borehole Pressure (mb)		Gas Flow (I/hr)	Water Depth (mbgl)	Carbon Dioxide (% / vol)	Methane (% / vol)	Oxygen (% / vol)	LEL (%)	Carbon Monoxide (ppm)	Hydrogen Sulphide (ppm)
BH04	1	50	4 (2)			7.00 to 11.00	300 secs	-	-	-	-	0.3	0.0	20.6	-	0	0
BH04	1	50	4 (3)	11.00	9.40	7.00 to 11.00	19/10/2017 12:36:00	-	-	-	9.40	-	-	-	-	-	-
BH05	1	50	1	12.00		8.00 to 12.00	28/09/2017	1008	1008	-0.1 _(I)	-	-	-	-	-	-	-
BH05	1	50	1			8.00 to 12.00	30 secs	-	-	-0.1 _(SS)	-	-	-	-	-	-	-
BH05	1	50	1 (2)	12.00		8.00 to 12.00	28/09/2017 00:01:00	-	-	-	-	0.0	0.0	20.9	0.0	0	0
BH05	1	50	1 (2)			8.00 to 12.00	15 secs	-	-	•	-	0.4	0.0	19.2	0.0	45	0
BH05	1	50	1 (2)			8.00 to 12.00	30 secs	-	-	ı	-	0.4	0.0	18.3	0.0	61	0
BH05	1	50	1 (2)			8.00 to 12.00	60 secs	-	-	ı	ı	0.5	0.0	18.3	0.0	63	0
BH05	1	50	1 (2)			8.00 to 12.00	90 secs	-	-	I	ı	0.5	0.0	18.3	0.0	63	0
BH05	1	50	1 (2)			8.00 to 12.00	120 secs	-	-	-	-	0.5	0.0	18.3	0.0	63	0
BH05	1	50	1 (2)			8.00 to 12.00	180 secs	-	-	-	-	0.5	0.0	18.3	0.0	63	0
BH05	1	50	1 (2)			8.00 to 12.00	240 secs	-	-	•	-	0.5	0.0	18.3	0.0	63	0
BH05	1	50	1 (2)			8.00 to 12.00	300 secs	-	-	ı	-	0.5	0.0	18.3	0.0	63	0
BH05	1	50	1 (3)	12.00	9.78	8.00 to 12.00	28/09/2017 00:07:00	-	-	-	6.85	-	-	-	-	-	-
BH05	1	50	2	12.00		8.00 to 12.00	05/10/2017 12:55:00	1007	1008	-0.2 _(I)	-	-	-	-	-	-	-
BH05	1	50	2			8.00 to 12.00	30 secs	-	-	-0.2 _(SS)	ı	-	-	-	-	-	-
BH05	1	50	2 (2)	12.00		8.00 to 12.00	05/10/2017 12:56:00	-	-	-	-	0.0	0.0	20.9	0.0	0	0

Key: I = Initial, P = Peak, SS = Steady State. Note: LEL = Lower Explosive Limit = 5% v/v.

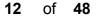
RSK Environment Ltd Abbey Park Humber Road Coventry CV3 4AQ

Compiled I
Mostrewij
Contract:

Compiled By	
Mostrowyer	

Date 26/10/17

Roade Bypass


Checked By

Date

313583

Page:

Contract Ref:

[Pressures] Previous During End Equipment Used & Remarks Start

Exploratory Position ID	Pipe ref	Pipe diameter (mm)	Monitoring Round	Reported Installation Depth (m)	Measured Installation Depth (mbgl)	Response Zone	Date & Time of Monitoring (elapsed time)	Borehole Pressure (mb)		Gas Flow (I/hr)	Water Depth (mbgl)	Carbon Dioxide (% / vol)	Methane (% / vol)	Oxygen (% / vol)	LEL (%)	Carbon Monoxide (ppm)	Hydrogen Sulphide (ppm)
BH05	1	50	2 (2)			8.00 to 12.00	15 secs	-	-	-	-	0.3	0.0	20.1	0.0	14	0
BH05	1	50	2 (2)			8.00 to 12.00	30 secs	-	-	-	-	0.4	0.0	19.3	0.0	18	0
BH05	1	50	2 (2)			8.00 to 12.00	60 secs	-	-	=	-	0.4	0.0	19.2	0.0	19	0
BH05	1	50	2 (2)			8.00 to 12.00	90 secs	-	-	=.	-	0.4	0.0	19.2	0.0	19	0
BH05	1	50	2 (2)			8.00 to 12.00	120 secs	-	-	-	-	0.4	0.0	19.1	0.0	19	0
BH05	1	50	2 (2)			8.00 to 12.00	180 secs	-	-	-	-	0.4	0.0	19.1	0.0	19	0
BH05	1	50	2 (2)			8.00 to 12.00	240 secs	-	-	-	-	0.4	0.0	19.1	0.0	20	0
BH05	1	50	2 (2)			8.00 to 12.00	300 secs	-	-	-	-	0.4	0.0	19.1	0.0	20	0
BH05	1	50	2 (3)	12.00	9.78	8.00 to 12.00	05/10/2017 13:02:00	-	-	-	6.92	-	-	-	-	-	-
BH05	1	50	3	12.00		8.00 to 12.00	13/10/2017 11:05:00	1006	1007	-2.7 _(I)	-	-	-	-	-	-	-
BH05	1	50	3			8.00 to 12.00	240 secs	-	-	-0.2	-	-	-	-	-	-	-
BH05	1	50	3 (2)	12.00		8.00 to 12.00	13/10/2017 11:10:00	-	-	-	-	0.0	0.0	20.9	0.0	0	0
BH05	1	50	3 (2)			8.00 to 12.00	15 secs	-	-	-	-	0.3	0.0	20.5	0.0	4	0
BH05	1	50	3 (2)			8.00 to 12.00	30 secs	-	-	-	-	0.4	0.0	20.2	0.0	6	0
BH05	1	50	3 (2)			8.00 to 12.00	60 secs	-	-	-	-	0.5	0.0	20.0	0.0	7	0
BH05	1	50	3 (2)			8.00 to 12.00	90 secs	-	-	-	-	0.5	0.0	20.0	0.0	7	0
BH05	1	50	3 (2)			8.00 to 12.00	120 secs	-	-	-	-	0.5	0.0	20.0	0.0	7	0
BH05	1	50	3 (2)			8.00 to 12.00	180 secs	-	-	-	-	0.5	0.0	20.0	0.0	7	0

Key: I = Initial, P = Peak, SS = Steady State. Note: LEL = Lower Explosive Limit = 5% v/v.

RSK Environment Ltd Abbey Park Humber Road Coventry CV3 4AQ

1	Coi
	MDSI
	Contract:

Compiled By	<i>'</i>
Mostrecize	
11-11-11-1	_

Date 26/10/17

Roade Bypass

Checked By

Date

313583

Page:

Contract Ref:

[Pressures] Previous During Start End Equipment Used & Remarks

Exploratory Position ID	Pipe ref	Pipe diameter (mm)	Monitoring Round	Reported Installation Depth (m)	Measured Installation Depth (mbgl)	Response Zone	Date & Time of Monitoring (elapsed time)	Borehole Pressure (mb)		Gas Flow (I/hr)	Water Depth (mbgl)	Carbon Dioxide (% / vol)	Methane (% / vol)	Oxygen (% / vol)	LEL (%)	Carbon Monoxide (ppm)	Hydrogen Sulphide (ppm)
BH05	1	50	3 (2)			8.00 to 12.00	240 secs	-	-	1	-	0.5	0.0	20.0	0.0	7	0
BH05	1	50	3 (2)			8.00 to 12.00	300 secs	-	-	-	-	0.5	0.0	20.0	0.0	7	0
BH05	1	50	3 (3)	12.00	9.84	8.00 to 12.00	13/10/2017 11:16:00	-	-	-	7.06	-	-	-	-	-	-
BH05	1	50	4	12.00		8.00 to 12.00	19/10/2017 11:46:00	1000	996	0.0(1)	-	-	-	-	-	-	-
BH05	1	50	4			8.00 to 12.00	15 secs	-	-	0.0 _(SS)	-	-	-	-	-	-	-
BH05	1	50	4 (2)	12.00		8.00 to 12.00	19/10/2017 11:46:30	-	-	1	-	0.1	0.0	20.9	-	0	0
BH05	1	50	4 (2)			8.00 to 12.00	15 secs	-	-	-	-	0.5	0.0	20.5	-	4	0
BH05	1	50	4 (2)			8.00 to 12.00	30 secs	-	-	-	-	0.5	0.0	19.9	-	5	0
BH05	1	50	4 (2)			8.00 to 12.00	60 secs	-	-	-	-	0.5	0.0	19.9	-	6	0
BH05	1	50	4 (2)			8.00 to 12.00	90 secs	-	-	-	-	0.5	0.0	19.9	-	6	0
BH05	1	50	4 (2)			8.00 to 12.00	120 secs	-	-	1	-	0.5	0.0	19.9	-	6	0
BH05	1	50	4 (2)			8.00 to 12.00	150 secs	-	-	-	-	0.5	0.0	19.9	-	6	0
BH05	1	50	4 (2)			8.00 to 12.00	210 secs	-	-	-	-	0.5	0.0	19.9	-	6	0
BH05	1	50	4 (3)	12.00	9.80	8.00 to 12.00	19/10/2017 11:52:00	-	-	-	7.10	-	-	-	-	-	-
WS01	1	50	1	2.50		1.50 to 2.50	28/09/2017 09:24:00	1001	1001	0.0 _(I)	-	-	-	-	-	-	-
WS01	1	50	1			1.50 to 2.50	30 secs	-	-	0.0 _(SS)	-	-	-	-	-	-	-
WS01	1	50	1 (2)	2.50		1.50 to 2.50	28/09/2017 09:25:00	-	-	-	-	0.0	0.0	20.9	0.0	0	0

Key: I = Initial, P = Peak, SS = Steady State. Note: LEL = Lower Explosive Limit = 5% v/v.

RSK Environment Ltd Abbey Park Humber Road Coventry CV3 4AQ

Compiled B
Mostrewa
Contract:

Compiled By
Mostrowiges

Date 26/10/17 Checked By

Contract Ref: Date

Page:

313583

Roade Bypass

[Pressures] Previous During Start End Equipment Used & Remarks

Exploratory Position ID	Pipe ref	Pipe diameter (mm)	Monitoring Round	Reported Installation Depth (m)	Measured Installation Depth (mbgl)	Response Zone	Date & Time of Monitoring (elapsed time)	Borehole Pressure (mb)		Gas Flow (l/hr)	Water Depth (mbgl)	Carbon Dioxide (% / vol)	Methane (% / vol)	Oxygen (% / vol)	LEL (%)	Carbon Monoxide (ppm)	Hydrogen Sulphide (ppm)
WS01	1	50	1 (2)			1.50 to 2.50	15 secs	-	-	-	-	1.1	0.0	12.2	0.0	2	0
WS01	1	50	1 (2)			1.50 to 2.50	30 secs	-	-	-	-	1.0	0.0	10.6	0.0	2	0
WS01	1	50	1 (2)			1.50 to 2.50	60 secs	-	-	1	-	1.0	0.0	10.3	0.0	2	0
WS01	1	50	1 (2)			1.50 to 2.50	90 secs	-	-	-	-	1.0	0.0	10.2	0.0	2	0
WS01	1	50	1 (2)			1.50 to 2.50	120 secs	-	-	-	-	1.1	0.0	10.1	0.0	1	0
WS01	1	50	1 (2)			1.50 to 2.50	180 secs	-	-	-	-	1.1	0.0	10.1	0.0	1	0
WS01	1	50	1 (2)			1.50 to 2.50	240 secs	-	-	-	-	1.0	0.0	10.1	0.0	1	0
WS01	1	50	1 (2)			1.50 to 2.50	300 secs	-	-	-	-	1.0	0.0	10.1	0.0	1	0
WS01	1	50	1 (3)	2.50	2.48	1.50 to 2.50	28/09/2017 09:31:00	-	-	-	DRY	-	-	-	-	-	-
WS01	1	50	2	2.50		1.50 to 2.50	05/10/2017 07:30:00	1001	1001	0.0 _(I)	-	-	-	-	-	-	-
WS01	1	50	2			1.50 to 2.50	30 secs	-	-	0.0 _(SS)	-	-	-	-	-	-	-
WS01	1	50	2 (2)	2.50		1.50 to 2.50	05/10/2017 07:31:00	-	-	-	-	0.0	0.0	20.9	0.0	0	0
WS01	1	50	2 (2)			1.50 to 2.50	15 secs	-	-	-	-	1.7	0.0	12.9	0.0	1	0
WS01	1	50	2 (2)			1.50 to 2.50	30 secs	-	-	-	-	1.7	0.0	5.1	0.0	1	0
WS01	1	50	2 (2)			1.50 to 2.50	60 secs	-	-	-	-	1.7	0.0	4.4	0.0	1	0
WS01	1	50	2 (2)			1.50 to 2.50	90 secs	-	-	-	-	1.7	0.0	4.3	0.0	0	0
WS01	1	50	2 (2)			1.50 to 2.50	120 secs	-	-	-	-	1.7	0.0	4.3	0.0	0	0
WS01	1	50	2 (2)			1.50 to 2.50	180 secs	-	-	-	-	1.7	0.0	4.3	0.0	0	0

Key: I = Initial, P = Peak, SS = Steady State. Note: LEL = Lower Explosive Limit = 5% v/v.

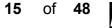
RSK Environment Abbey Park Humber Road Coventry CV3 4AQ

Ltd	
	Co

ontract:

Compiled E	Ву
Mostrowy	S

Date 26/10/17 Checked By


Date

Contract Ref:

313583

Page:

Roade Bypass

[Pressures] Previous During End Equipment Used & Remarks Start

Exploratory Position ID	Pipe ref	Pipe diameter (mm)	Monitoring Round	Reported Installation Depth (m)	Measured Installation Depth (mbgl)	Response Zone	Date & Time of Monitoring (elapsed time)	Borehole Pressure (mb)		Gas Flow (l/hr)	Water Depth (mbgl)	Carbon Dioxide (% / vol)	Methane (% / vol)	Oxygen (% / vol)	LEL (%)	Carbon Monoxide (ppm)	Hydrogen Sulphide (ppm)
WS01	1	50	2 (2)			1.50 to 2.50	240 secs	-	-	-	-	1.7	0.0	4.2	0.0	0	0
WS01	1	50	2 (2)			1.50 to 2.50	300 secs	-	-	-	-	1.7	0.0	4.2	0.0	0	0
WS01	1	50	2 (3)	2.50	2.48	1.50 to 2.50	05/10/2017 07:37:00	-	-	-	DRY	-	-	-	-	-	-
WS01	1	50	3	2.50		1.50 to 2.50	13/10/2017 10:00:00	1007	1007	0.2 _(I)	-	-	-	-	-	-	-
WS01	1	50	3			1.50 to 2.50	30 secs	-	-	0.2 _(SS)	-	-	-	-	-	-	-
WS01	1	50	3 (2)	2.50		1.50 to 2.50	13/10/2017 10:01:00	-	-	-	-	0.0	0.0	20.9	0.0	0	0
WS01	1	50	3 (2)			1.50 to 2.50	15 secs	-	-	-	-	1.7	0.0	13.1	0.0	0	0
WS01	1	50	3 (2)			1.50 to 2.50	30 secs	-	-	-	-	1.7	0.0	3.6	0.0	0	0
WS01	1	50	3 (2)			1.50 to 2.50	60 secs	-	-	-	-	1.7	0.0	3.0	0.0	0	0
WS01	1	50	3 (2)			1.50 to 2.50	90 secs	-	-	-	-	1.7	0.0	2.9	0.0	0	0
WS01	1	50	3 (2)			1.50 to 2.50	120 secs	-	-	1	-	1.7	0.0	2.9	0.0	0	0
WS01	1	50	3 (2)			1.50 to 2.50	180 secs	-	-	-	-	1.7	0.0	2.9	0.0	0	0
WS01	1	50	3 (2)			1.50 to 2.50	240 secs	-	-	1	-	1.7	0.0	2.8	0.0	0	0
WS01	1	50	3 (2)			1.50 to 2.50	300 secs	-	-	1	-	1.7	0.0	2.8	0.0	0	0
WS01	1	50	3 (3)	2.50	2.48	1.50 to 2.50	13/10/2017 10:07:00	-	-	-	DRY	-	-	-	-	-	-
WS01	1	50	4	2.50		1.50 to 2.50	19/10/2017 10:38:00	-	-	0.1 _(I)	-	-	-	-	-	-	-
WS01	1	50	4			1.50 to 2.50	30 secs	-	-	0.1 _(SS)	-	-	-	-	-	-	-
WS01	1	50	4 (2)	2.50		1.50 to 2.50	19/10/2017 10:38:45	-	-	-	-	0.1	0.0	20.9	-	0	-

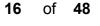
Key: I = Initial, P = Peak, SS = Steady State. Note: LEL = Lower Explosive Limit = 5% v/v.

RSK Environment L Abbey Park Humber Road Coventry CV3 4AQ

Ltd	
	Conti
	Conti

Compiled By
Mostrowije
Contract:

Date Checked By 26/10/17


Roade Bypass

Date

313583

Page:

Contract Ref:

[Pressures] Previous During End Equipment Used & Remarks Start

Exploratory Position ID	Pipe ref	Pipe diameter (mm)	Monitoring Round	Reported Installation Depth (m)	Measured Installation Depth (mbgl)	Response Zone	Date & Time of Monitoring (elapsed time)	Borehole Pressure (mb)		Gas Flow (I/hr)	Water Depth (mbgl)	Carbon Dioxide (% / vol)	Methane (% / vol)	Oxygen (% / vol)	LEL (%)	Carbon Monoxide (ppm)	Hydrogen Sulphide (ppm)
WS01	1	50	4 (2)			1.50 to 2.50	15 secs	-	-	-	-	1.8	0.0	17.0	-	0	0
WS01	1	50	4 (2)			1.50 to 2.50	45 secs	-	-	-	-	1.7	0.0	5.8	-	0	0
WS01	1	50	4 (2)			1.50 to 2.50	75 secs	-	-	=	-	1.7	0.0	4.8	-	0	0
WS01	1	50	4 (2)			1.50 to 2.50	105 secs	-	-	-	-	1.7	0.0	4.5	-	0	0
WS01	1	50	4 (2)			1.50 to 2.50	135 secs	-	-	-	-	1.7	0.0	4.4	-	0	0
WS01	1	50	4 (2)			1.50 to 2.50	195 secs	-	-	-	-	1.7	0.0	4.1	-	0	0
WS01	1	50	4 (2)			1.50 to 2.50	255 secs	-	-	-	-	1.7	0.0	4.0	-	0	0
WS01	1	50	4 (2)			1.50 to 2.50	315 secs	-	-	-	-	1.7	0.0	3.9	-	0	0
WS01	1	50	4 (2)			1.50 to 2.50	375 secs	-	-	-	-	1.7	0.0	3.9	-	0	0
WS01	1	50	4 (3)	2.50	2.48	1.50 to 2.50	19/10/2017 10:48:00	-	-	-	DRY	-	-	-	-	-	-
WS02	1	50	1	5.00		3.00 to 5.00	02/09/2017 10:02:00	1004	1004	0.1 _(I)	ı	-	-	-	-	-	-
WS02	1	50	1			3.00 to 5.00	30 secs	-	-	0.1 _(SS)	-	-	-	-	-	-	-
WS02	1	50	1 (2)	5.00		3.00 to 5.00	02/09/2017 10:03:00	-	-	-	-	0.0	0.0	20.9	0.0	0	0
WS02	1	50	1 (2)			3.00 to 5.00	15 secs	-	-	-	-	1.7	0.0	17.6	0.0	2	0
WS02	1	50	1 (2)			3.00 to 5.00	30 secs	-	-	-	-	1.6	0.0	15.8	0.0	2	0
WS02	1	50	1 (2)			3.00 to 5.00	60 secs	-	-	-	-	1.6	0.0	15.8	0.0	2	0
WS02	1	50	1 (2)			3.00 to 5.00	93 secs	-	-	-	-	1.6	0.0	15.8	0.0	2	0

Key: I = Initial, P = Peak, SS = Steady State. Note: LEL = Lower Explosive Limit = 5% v/v.

RSK Environment Ltd Abbey Park Humber Road Coventry CV3 4AQ

Compiled By
Mostrouse
Contract:

Date 26/10/17

Roade Bypass

Checked By

Date

313583

Page:

Contract Ref:

[Pressures] Previous During Start End Equipment Used & Remarks

Exploratory Position ID	Pipe ref	Pipe diameter (mm)	Monitoring Round	Reported Installation Depth (m)	Measured Installation Depth (mbgl)	Response Zone	Date & Time of Monitoring (elapsed time)	Borehole Pressure (mb)		Gas Flow (l/hr)	Water Depth (mbgl)	Carbon Dioxide (% / vol)	Methane (% / vol)	Oxygen (% / vol)	LEL (%)	Carbon Monoxide (ppm)	Hydrogen Sulphide (ppm)
WS02	1	50	1 (2)			3.00 to 5.00	120 secs	-	-	-	-	1.6	0.0	15.8	0.0	2	0
WS02	1	50	1 (2)			3.00 to 5.00	180 secs	-	-	-	-	1.6	0.0	15.8	0.0	2	0
WS02	1	50	1 (2)			3.00 to 5.00	240 secs	-	-	1	-	1.6	0.0	15.8	0.0	2	0
WS02	1	50	1 (2)			3.00 to 5.00	300 secs	-	-	-	-	1.6	0.0	15.8	0.0	2	0
WS02	1	50	1 (3)	5.00	4.98	3.00 to 5.00	02/09/2017 10:09:00	-	-	-	1.18	-	-	-	-	-	-
WS02	1	50	2	5.00		3.00 to 5.00	05/10/2017 10:25:00	1018	1005	15.4 _(I)	-	-	-	-	-	-	-
WS02	1	50	2			3.00 to 5.00	420 secs	-	-	0.2 _(SS)	-	-	-	-	-	-	-
WS02	1	50	2 (2)	5.00		3.00 to 5.00	05/10/2017 10:33:00	-	-	-	-	0.0	0.0	20.9	0.0	0	0
WS02	1	50	2 (2)			3.00 to 5.00	15 secs	-	-	-	-	2.1	0.0	18.6	0.0	0	0
WS02	1	50	2 (2)			3.00 to 5.00	30 secs	-	-	-	-	2.1	0.0	17.7	0.0	0	0
WS02	1	50	2 (2)			3.00 to 5.00	60 secs	-	-	-	-	2.1	0.0	17.6	0.0	0	0
WS02	1	50	2 (2)			3.00 to 5.00	90 secs	-	-	-	-	2.1	0.0	17.6	0.0	0	0
WS02	1	50	2 (2)			3.00 to 5.00	120 secs	-	-	-	-	2.1	0.0	17.6	0.0	0	0
WS02	1	50	2 (2)			3.00 to 5.00	180 secs	-	-	-	-	2.1	0.0	17.6	0.0	0	0
WS02	1	50	2 (2)			3.00 to 5.00	240 secs	-	-	-	-	2.1	0.0	17.6	0.0	0	0
WS02	1	50	2 (2)			3.00 to 5.00	300 secs	-	-	-	-	2.1	0.0	17.6	0.0	0	0
WS02	1	50	2 (3)	5.00	5.00	3.00 to 5.00	05/10/2017 10:39:00	-	-	-	2.77	-	-	-	-	-	-
WS02	1	50	3	5.00		3.00 to 5.00	13/10/2017 10:18:00	1051	1009	18.2 _(I)	-	-	-	-	-	-	-

Key: I = Initial, P = Peak, SS = Steady State. Note: LEL = Lower Explosive Limit = 5% v/v.

RSK Environment Ltd Abbey Park Humber Road Coventry CV3 4AQ

Compile
Mostro
Contract:

	Compiled By	
	Mostrowije	

Date 26/10/17

Checked By Date Contract Ref:

Page:

313583

Roade Bypass

[Pressures] Previous During End Equipment Used & Remarks Start

Exploratory Position ID	Pipe ref	Pipe diameter (mm)	Monitoring Round	Reported Installation Depth (m)	Measured Installation Depth (mbgl)	Response Zone	Date & Time of Monitoring (elapsed time)	Borehole Pressure (mb)		Gas Flow (l/hr)	Water Depth (mbgl)	Carbon Dioxide (% / vol)	Methane (% / vol)	Oxygen (% / vol)	LEL (%)	Carbon Monoxide (ppm)	Hydrogen Sulphide (ppm)
WS02	1	50	3			3.00 to 5.00	30 secs	-	-	0.3 _(SS)	-	-	-	-	-	-	-
WS02	1	50	3 (2)	5.00		3.00 to 5.00	13/10/2017 10:19:00	-	-	-	-	0.1	0.0	20.9	-	0	0
WS02	1	50	3 (2)			3.00 to 5.00	30 secs	-	-	-	-	1.9	0.0	20.1	-	1	0
WS02	1	50	3 (2)			3.00 to 5.00	60 secs	-	-	-	-	2.2	0.0	19.4	-	1	0
WS02	1	50	3 (2)			3.00 to 5.00	90 secs	-	-	-	-	2.2	0.0	17.5	-	1	0
WS02	1	50	3 (2)			3.00 to 5.00	105 secs	-	-	-	-	2.2	0.0	17.3	-	1	0
WS02	1	50	3 (2)			3.00 to 5.00	120 secs	-	-	-	-	2.2	0.0	17.3	-	1	0
WS02	1	50	3 (2)			3.00 to 5.00	150 secs	-	-	-	-	2.2	0.0	17.3	-	1	0
WS02	1	50	3 (2)			3.00 to 5.00	180 secs	-	-	-	-	2.1	0.0	17.4	-	1	0
WS02	1	50	3 (3)	5.00	4.98	3.00 to 5.00	13/10/2017 10:24:00	-	-	-	3.05	-	-	-	-	-	-
WS02	1	50	4	5.00		3.00 to 5.00	18/10/2017 10:12:00	1002	1002	17.8 _(I)	-	-	-	-	-	-	-
WS02	1	50	4			3.00 to 5.00	30 secs	-	-	0.2 _(SS)	-	-	-	-	-	-	-
WS02	1	50	4 (2)	5.00		3.00 to 5.00	18/10/2017 10:16:00	-	-	-	-	0.1	0.0	20.9	-	0	0
WS02	1	50	4 (2)			3.00 to 5.00	60 secs	-	-	-	-	2.2	0.0	20.1	-	0	0
WS02	1	50	4 (2)			3.00 to 5.00	90 secs	-	-	-	-	2.1	0.0	17.7	-	0	0
WS02	1	50	4 (2)			3.00 to 5.00	120 secs	-	-	-	-	2.1	0.0	17.3	-	0	0
WS02	1	50	4 (2)			3.00 to 5.00	150 secs	-	-	-	-	2.1	0.0	17.3	-	0	0
WS02	1	50	4 (2)			3.00 to 5.00	180 secs	-	-	-	-	2.1	0.0	17.3	-	0	0

Key: I = Initial, P = Peak, SS = Steady State. Note: LEL = Lower Explosive Limit = 5% v/v.

RSK Environment Ltd Abbey Park Humber Road Coventry CV3 4AQ

ı	Con
•	MDSt
	Contract:

Compiled By	
Mostrowser	_

Date 26/10/17 Checked By

Date

Contract Ref:

Page:

313583

Roade Bypass

[Pressures] Previous During Start End Equipment Used & Remarks

Exploratory Position ID	Pipe ref	Pipe diameter (mm)	Monitoring Round	Reported Installation Depth (m)	Measured Installation Depth (mbgl)	Response Zone	Date & Time of Monitoring (elapsed time)	Borehole Pressure (mb)		Gas Flow (I/hr)	Water Depth (mbgl)	Carbon Dioxide (% / vol)	Methane (% / vol)	Oxygen (% / vol)	LEL (%)	Carbon Monoxide (ppm)	Hydrogen Sulphide (ppm)
WS02	1	50	4 (2)			3.00 to 5.00	240 secs	-	-	-	-	2.1	0.0	17.3	-	0	0
WS02	1	50	4 (2)			3.00 to 5.00	300 secs	-	-	-	-	2.1	0.0	17.3	-	0	0
WS02	1	50	4 (2)			3.00 to 5.00	360 secs	-	-	-	-	2.1	0.0	17.3	-	0	0
WS02	1	50	4 (3)	5.00		3.00 to 5.00	18/10/2017 10:23:00	-	-	-	-	-	-	-	-	-	-
WS03	1	50	1	3.00		1.00 to 3.00	28/09/2017 12:37:00	1005	1005	0.0(1)	-	-	-	-	-	_	-
WS03	1	50	1			1.00 to 3.00	30 secs	-	-	0.0 _(SS)	-	-	-	-	-	-	-
WS03	1	50	1 (2)	3.00		1.00 to 3.00	28/09/2017 12:38:00	-	-	-	-	0.0	0.0	20.9	0.0	0	0
WS03	1	50	1 (2)			1.00 to 3.00	15 secs	-	-	-	-	2.2	0.0	18.6	0.0	0	1
WS03	1	50	1 (2)			1.00 to 3.00	30 secs	-	-	-	-	2.1	0.0	18.2	0.0	0	1
WS03	1	50	1 (2)			1.00 to 3.00	60 secs	-	-	-	-	2.1	0.0	18.2	0.0	0	1
WS03	1	50	1 (2)			1.00 to 3.00	90 secs	-	-	-	-	2.1	0.0	18.2	0.0	0	1
WS03	1	50	1 (2)			1.00 to 3.00	120 secs	-	-	-	-	2.1	0.0	18.2	0.0	0	1
WS03	1	50	1 (2)			1.00 to 3.00	180 secs	-	-	-	-	2.1	0.0	18.2	0.0	0	1
WS03	1	50	1 (2)			1.00 to 3.00	240 secs	-	-	-	-	2.1	0.0	18.2	0.0	0	1
WS03	1	50	1 (2)			1.00 to 3.00	300 secs	-	-	-	-	2.1	0.0	18.2	0.0	0	1
WS03	1	50	1 (3)	3.00	3.00	1.00 to 3.00	28/09/2017 12:44:00	-	-	-	DRY	-	-	-	-	-	-
WS03	1	50	2	3.00		1.00 to 3.00	06/10/2017 12:30:00	1003	1003	0.3 _(I)	_	-	-	-	-	-	-

Key: I = Initial, P = Peak, SS = Steady State. Note: LEL = Lower Explosive Limit = 5% v/v.

RSK Environment Ltd Abbey Park Humber Road Coventry CV3 4AQ

Complied
Mostrew
Contract:

Compiled By	
Mostrowije	

Date 26/10/17 Checked By

Date

Contract Ref:

313583

Page:

Roade Bypass

[Pressures] Previous During End Equipment Used & Remarks Start

Exploratory Position ID	Pipe ref	Pipe diameter (mm)	Monitoring Round	Reported Installation Depth (m)	Measured Installation Depth (mbgl)	Response Zone	Date & Time of Monitoring (elapsed time)	Borehole Pressure (mb)		Gas Flow (I/hr)	Water Depth (mbgl)	Carbon Dioxide (% / vol)	Methane (% / vol)	Oxygen (% / vol)	LEL (%)	Carbon Monoxide (ppm)	Hydrogen Sulphide (ppm)
WS03	1	50	2			1.00 to 3.00	30 secs	-	-	0.3 _(SS)	-	-	-	-	-	-	-
WS03	1	50	2 (2)	3.00		1.00 to 3.00	06/10/2017 12:31:00	-	-	-	-	0.0	0.0	20.9	0.0	0	0
WS03	1	50	2 (2)			1.00 to 3.00	15 secs	-	-	-	-	2.4	0.0	19.3	0.0	0	0
WS03	1	50	2 (2)			1.00 to 3.00	30 secs	-	-	-	-	2.3	0.0	18.8	0.0	0	0
WS03	1	50	2 (2)			1.00 to 3.00	60 secs	-	-	-	-	2.2	0.0	18.7	0.0	0	0
WS03	1	50	2 (2)			1.00 to 3.00	90 secs	-	-	-	-	2.2	0.0	18.7	0.0	0	0
WS03	1	50	2 (2)			1.00 to 3.00	120 secs	-	-	-	-	2.2	0.0	18.7	0.0	0	0
WS03	1	50	2 (2)			1.00 to 3.00	180 secs	-	-	-	-	2.2	0.0	18.7	0.0	0	0
WS03	1	50	2 (2)			1.00 to 3.00	240 secs	-	-	-	-	2.2	0.0	18.6	0.0	0	0
WS03	1	50	2 (2)			1.00 to 3.00	300 secs	-	-	-	-	2.2	0.0	18.6	0.0	0	0
WS03	1	50	2 (3)	3.00	2.99	1.00 to 3.00	06/10/2017 12:37:00	-	-	-	DRY	-	-	-	-	-	-
WS03	1	50	3	3.00		1.00 to 3.00	13/10/2017 11:50:00	1009	1009	0.0(1)	-	-	-	-	-	-	-
WS03	1	50	3			1.00 to 3.00	30 secs	-	-	0.0 _(SS)	-	-	-	-	-	-	-
WS03	1	50	3 (2)	3.00		1.00 to 3.00	13/10/2017 11:51:00	-	-	-	-	0.0	0.0	20.9	0.0	0	0
WS03	1	50	3 (2)			1.00 to 3.00	15 secs	-	-	-		2.1	0.0	20.0	0.0	0	0
WS03	1	50	3 (2)			1.00 to 3.00	30 secs	-	-	-	-	2.1	0.0	19.3	0.0	0	0
WS03	1	50	3 (2)			1.00 to 3.00	60 secs	-	-	-	-	2.1	0.0	19.2	0.0	0	0
WS03	1	50	3 (2)			1.00 to 3.00	90 secs	-	-	-	-	2.1	0.0	19.2	0.0	0	0

Key: I = Initial, P = Peak, SS = Steady State. Note: LEL = Lower Explosive Limit = 5% v/v.

RSK Environment Abbey Park Humber Road Coventry CV3 4AQ

Ltd	
	Co

ontract:

Compiled By
Mostrowger

Date 26/10/17

Roade Bypass

Checked By

Date

Contract Ref:

313583

Page:

[Pressures] Previous During Start End Equipment Used & Remarks

Exploratory Position ID	Pipe ref	Pipe diameter (mm)	Monitoring Round	Reported Installation Depth (m)	Measured Installation Depth (mbgl)	Response Zone	Date & Time of Monitoring (elapsed time)	Borehole Pressure (mb)		Gas Flow (I/hr)	Water Depth (mbgl)	Carbon Dioxide (% / vol)	Methane (% / vol)	Oxygen (% / vol)	LEL (%)	Carbon Monoxide (ppm)	Hydrogen Sulphide (ppm)
WS03	1	50	3 (2)			1.00 to 3.00	120 secs	-	-	-	-	2.1	0.0	19.3	0.0	0	0
WS03	1	50	3 (2)			1.00 to 3.00	180 secs	-	-	-	-	2.1	0.0	19.3	0.0	0	0
WS03	1	50	3 (2)			1.00 to 3.00	240 secs	-	-	1	-	2.1	0.0	19.3	0.0	0	0
WS03	1	50	3 (2)			1.00 to 3.00	300 secs	-	-	-	-	2.1	0.0	19.3	0.0	0	0
WS03	1	50	3 (3)	3.00	3.02	1.00 to 3.00	13/10/2017 11:57:00	-	-	-	DRY	-	-	-	-	-	-
WS03	1	50	4	3.00		1.00 to 3.00	19/10/2017 12:39:00	993	993	0.0 _(I)	-	-	-	-	-	-	-
WS03	1	50	4			1.00 to 3.00	30 secs	993	993	0.0 _(SS)	-	-	-	-	-	-	-
WS03	1	50	4 (2)	3.00		1.00 to 3.00	19/10/2017 12:40:00	-	-	-	-	0.1	0.0	20.9	-	0	0
WS03	1	50	4 (2)			1.00 to 3.00	30 secs	-	-	-	-	1.9	0.0	20.5	-	0	0
WS03	1	50	4 (2)			1.00 to 3.00	45 secs	-	-	-	-	1.8	0.0	19.7	-	0	0
WS03	1	50	4 (2)			1.00 to 3.00	60 secs	-	-	-	-	1.8	0.0	19.6	=	0	0
WS03	1	50	4 (2)			1.00 to 3.00	90 secs	-	-	-	-	1.8	0.0	19.6	=	0	0
WS03	1	50	4 (2)			1.00 to 3.00	120 secs	-	-	-	-	1.8	0.0	19.6	-	0	0
WS03	1	50	4 (2)			1.00 to 3.00	180 secs	-	-	-	-	1.8	0.0	19.6	-	0	0
WS03	1	50	4 (2)			1.00 to 3.00	240 secs	-	-	-	-	1.8	0.0	19.6	-	0	0
WS03	1	50	4 (2)			1.00 to 3.00	300 secs	-	-	-	-	1.8	0.0	19.6	-	0	0
WS03	1	50	4 (2)			1.00 to 3.00	360 secs	-	-	-	-	1.8	0.0	19.6	-	0	0
WS03	1	50	4 (3)	3.00	3.00	1.00 to 3.00	19/10/2017 12:50:00	-	-	-	3.00	-	-	-	-	-	-

Key: I = Initial, P = Peak, SS = Steady State. Note: LEL = Lower Explosive Limit = 5% v/v.

RSK Environment Ltd Abbey Park Humber Road Coventry CV3 4AQ

Complied
Mostrew
Contract:

Compiled By	
MDStrowge	

Date 26/10/17

Roade Bypass

Checked By

Contract Ref: Date

313583

Page:

[Pressures] Previous During Start End Equipment Used & Remarks

Exploratory Position ID	Pipe ref	Pipe diameter (mm)	Monitoring Round	Reported Installation Depth (m)	Measured Installation Depth (mbgl)	Response Zone	Date & Time of Monitoring (elapsed time)	Borehole Pressure (mb)		Gas Flow (I/hr)	Water Depth (mbgl)	Carbon Dioxide (% / vol)	Methane (% / vol)	Oxygen (% / vol)	LEL (%)	Carbon Monoxide (ppm)	Hydrogen Sulphide (ppm)
WS04	1	50	1	2.00		1.00 to 2.00	28/09/2017 13:25:00	-	-	0.1 _(I)	-	-	-	-	-	-	-
WS04	1	50	1			1.00 to 2.00	30 secs	-	-	0.1 _(SS)	-	-	-	-	-	-	-
WS04	1	50	1 (2)	2.00		1.00 to 2.00	28/09/2017 13:26:00	-	-	=	-	0.0	0.0	20.9	0.0	0	0
WS04	1	50	1 (2)			1.00 to 2.00	15 secs	-	-	-	-	1.2	0.0	19.4	0.0	0	0
WS04	1	50	1 (2)			1.00 to 2.00	30 secs	-	-	-	-	1.2	0.0	19.5	0.0	0	0
WS04	1	50	1 (2)			1.00 to 2.00	60 secs	-	-	-	-	1.1	0.0	19.4	0.0	0	0
WS04	1	50	1 (2)			1.00 to 2.00	90 secs	-	-	-	-	1.1	0.0	19.4	0.0	0	0
WS04	1	50	1 (2)			1.00 to 2.00	120 secs	-	-	-	-	1.1	0.0	19.4	0.0	0	0
WS04	1	50	1 (2)			1.00 to 2.00	180 secs	-	-	-	-	1.1	0.0	19.4	0.0	0	0
WS04	1	50	1 (2)			1.00 to 2.00	240 secs	-	-	-	-	1.1	0.0	19.4	0.0	0	0
WS04	1	50	1 (2)			1.00 to 2.00	300 secs	-	-	-	-	1.1	0.0	19.4	0.0	0	0
WS04	1	50	1 (3)	2.00	2.10	1.00 to 2.00	28/09/2017 13:32:00	-	-	-	DRY	-	-	-	-	-	-
WS04	1	50	2	2.00		1.00 to 2.00	06/10/2017 14:20:00	1008	1008	0.0 _(I)	-	-	-	-	-	-	-
WS04	1	50	2			1.00 to 2.00	30 secs	-	-	0.0 _(SS)	-	-	-	-	-	-	-
WS04	1	50	2 (2)	2.00		1.00 to 2.00	06/10/2017 14:21:00	-	-	-	-	0.0	0.0	20.9	0.0	0	0
WS04	1	50	2 (2)			1.00 to 2.00	15 secs	-	-	-	-	0.1	0.0	20.7	0.0	1	0
WS04	1	50	2 (2)			1.00 to 2.00	30 secs	-	-	-	-	0.2	0.0	20.6	0.0	0	0

Key: I = Initial, P = Peak, SS = Steady State. Note: LEL = Lower Explosive Limit = 5% v/v.

RSK

RSK Environment Ltd Abbey Park Humber Road Coventry CV3 4AQ

td	
	Contrac
	Contido

Compiled By	
Mostrowyer	

Date 26/10/17

Checked By

Date

Contract Ref:

313583

ct:

Roade Bypass

Page:

[Pressures] Previous During Start End Equipment Used & Remarks

Exploratory Position ID	Pipe ref	Pipe diameter (mm)	Monitoring Round	Reported Installation Depth (m)	Measured Installation Depth (mbgl)	Response Zone	Date & Time of Monitoring (elapsed time)	Borehole Pressure (mb)		Gas Flow (l/hr)	Water Depth (mbgl)	Carbon Dioxide (% / vol)	Methane (% / vol)	Oxygen (% / vol)	LEL (%)	Carbon Monoxide (ppm)	Hydrogen Sulphide (ppm)
WS04	1	50	2 (2)			1.00 to 2.00	60 secs	-	-	-	-	0.2	0.0	20.5	0.0	0	0
WS04	1	50	2 (2)			1.00 to 2.00	90 secs	-	-	-	-	0.2	0.0	20.5	0.0	0	0
WS04	1	50	2 (2)			1.00 to 2.00	120 secs	-	-	1	-	0.3	0.0	20.4	0.0	0	0
WS04	1	50	2 (2)			1.00 to 2.00	180 secs	-	-	-	-	0.5	0.0	20.2	0.0	0	0
WS04	1	50	2 (2)			1.00 to 2.00	240 secs	-	-	-	-	0.6	0.0	20.0	0.0	0	0
WS04	1	50	2 (2)			1.00 to 2.00	300 secs	-	-	-	-	0.8	0.0	19.8	0.0	0	0
WS04	1	50	2 (2)			1.00 to 2.00	360 secs	-	-	-	-	1.0	0.0	19.7	0.0	0	0
WS04	1	50	2 (2)			1.00 to 2.00	420 secs	-	-	-	-	1.0	0.0	19.7	0.0	0	0
WS04	1	50	2 (3)	2.00	2.12	1.00 to 2.00	06/10/2017 14:29:00	-	-	-	1.90	-	-	-	-	-	-
WS04	1	50	3	2.00		1.00 to 2.00	13/10/2017 11:20:00	1007	1007	0.0 _(I)	-	-	-	-	-	-	-
WS04	1	50	3			1.00 to 2.00	30 secs	-	-	0.0 _(SS)	-	-	-	-	-	-	-
WS04	1	50	3 (2)	2.00		1.00 to 2.00	13/10/2017 11:21:00	-	-	-	-	0.0	0.0	20.9	0.0	0	0
WS04	1	50	3 (2)			1.00 to 2.00	15 secs	-	-	-	-	1.3	0.0	20.4	0.0	1	0
WS04	1	50	3 (2)			1.00 to 2.00	30 secs	-	-	-	-	1.3	0.0	19.8	0.0	0	0
WS04	1	50	3 (2)			1.00 to 2.00	60 secs	-	-	-	-	1.3	0.0	19.8	0.0	0	0
WS04	1	50	3 (2)			1.00 to 2.00	90 secs	-	-	-	-	1.3	0.0	19.8	0.0	0	0
WS04	1	50	3 (2)			1.00 to 2.00	120 secs	-	-	-	-	1.3	0.0	19.8	0.0	0	0
WS04	1	50	3 (2)			1.00 to 2.00	180 secs	-	-	-	-	1.3	0.0	19.8	0.0	0	0

Key: I = Initial, P = Peak, SS = Steady State. Note: LEL = Lower Explosive Limit = 5% v/v.

RSK Environment Abbey Park Humber Road Coventry CV3 4AQ

Ltd	
	Con

	Compiled By
М	Dstrewger
Contract:	

Date

26/10/17

Roade Bypass

Checked By

Date

313583

Page:

Contract Ref:

[Pressures] Previous During Start End Equipment Used & Remarks

Exploratory Position ID	Pipe ref	Pipe diameter (mm)	Monitoring Round	Reported Installation Depth (m)	Measured Installation Depth (mbgl)	Response Zone	Date & Time of Monitoring (elapsed time)	Borehole Pressure (mb)		Gas Flow (l/hr)	Water Depth (mbgl)	Carbon Dioxide (% / vol)	Methane (% / vol)	Oxygen (% / vol)	LEL (%)	Carbon Monoxide (ppm)	Hydrogen Sulphide (ppm)
WS04	1	50	3 (2)			1.00 to 2.00	240 secs	-	-	-	-	1.3	0.0	19.8	0.0	0	0
WS04	1	50	3 (2)			1.00 to 2.00	300 secs	-	-	=	-	1.3	0.0	19.8	0.0	0	0
WS04	1	50	3 (3)	2.00	2.10	1.00 to 2.00	13/10/2017 11:27:00	-	-	-	1.87	-	-	-	-	-	-
WS04	1	50	4	2.00		1.00 to 2.00	19/10/2017 12:03:00	995	995	0.0 _(I)	-	-	-	-	-	-	-
WS04	1	50	4			1.00 to 2.00	15 secs	-	-	0.0 _(SS)	-	-	-	-	-	-	-
WS04	1	50	4 (2)	2.00		1.00 to 2.00	19/10/2017 12:03:30	-	-	-	-	0.1	0.0	20.9	-	0	0
WS04	1	50	4 (2)			1.00 to 2.00	30 secs	-	-	-	-	1.3	0.0	20.6	-	0	0
WS04	1	50	4 (2)			1.00 to 2.00	45 secs	-	-	-	-	1.2	0.0	19.9	-	0	0
WS04	1	50	4 (2)			1.00 to 2.00	60 secs	-	-	-	-	1.2	0.0	19.9	-	0	0
WS04	1	50	4 (2)			1.00 to 2.00	90 secs	-	-	-	-	1.2	0.0	19.9	-	0	0
WS04	1	50	4 (2)			1.00 to 2.00	105 secs	-	-	-	-	1.2	0.0	19.9	-	0	0
WS04	1	50	4 (2)			1.00 to 2.00	150 secs	-	-	-	-	1.2	0.0	19.9	-	0	0
WS04	1	50	4 (2)			1.00 to 2.00	210 secs	-	-	-	-	1.2	0.0	19.9	-	0	0
WS04	1	50	4 (2)			1.00 to 2.00	270 secs	-	-	-	-	1.2	0.0	19.9	-	0	0
WS04	1	50	4 (3)	2.00	2.10	1.00 to 2.00	19/10/2017 12:09:00	-	-	-	1.87	-	-	-	-	-	-
·																	
WS05	1	50	1	4.00		2.00 to 4.00	28/09/2017	1008	1008	-0.1 _(I)	-	-	-	-	-	-	-
WS05	1	50	1			2.00 to 4.00	30 secs	-	_	-0.1 _(SS)	_	-	-	-	-	-	-

Key: I = Initial, P = Peak, SS = Steady State. Note: LEL = Lower Explosive Limit = 5% v/v.

RSK Environment Ltd Abbey Park Humber Road Coventry CV3 4AQ

Compile
Mostrea
Contract:

Compiled By
Mostrowije

Date 26/10/17

Checked By

Date

Contract Ref:

313583

Roade Bypass

Page:

[Pressures] Previous During End Equipment Used & Remarks Start

Exploratory Position ID	Pipe ref	Pipe diameter (mm)	Monitoring Round	Reported Installation Depth (m)	Measured Installation Depth (mbgl)	Response Zone	Date & Time of Monitoring (elapsed time)	Borehole Pressure (mb)		Gas Flow (I/hr)	Water Depth (mbgl)	Carbon Dioxide (% / vol)	Methane (% / vol)	Oxygen (% / vol)	LEL (%)	Carbon Monoxide (ppm)	Hydrogen Sulphide (ppm)
WS05	1	50	1 (2)	4.00		2.00 to 4.00	28/09/2017 00:01:00	-	-	-	-	0.0	0.0	20.9	0.0	0	0
WS05	1	50	1 (2)			2.00 to 4.00	15 secs	-	-	-	-	0.3	0.0	20.1	0.0	2	0
WS05	1	50	1 (2)			2.00 to 4.00	30 secs	-	-	1	-	0.3	0.0	19.7	0.0	2	0
WS05	1	50	1 (2)			2.00 to 4.00	60 secs	-	-	-	-	0.4	0.0	19.7	0.0	2	0
WS05	1	50	1 (2)			2.00 to 4.00	90 secs	-	-	-	-	0.4	0.0	19.6	0.0	2	0
WS05	1	50	1 (2)			2.00 to 4.00	120 secs	-	-	-	-	0.4	0.0	19.5	0.0	2	0
WS05	1	50	1 (2)			2.00 to 4.00	180 secs	-	-	-	-	0.5	0.0	19.4	0.0	1	0
WS05	1	50	1 (2)			2.00 to 4.00	240 secs	-	-	-	-	0.6	0.0	19.3	0.0	2	0
WS05	1	50	1 (2)			2.00 to 4.00	300 secs	-	-	-	-	0.6	0.0	19.2	0.0	1	0
WS05	1	50	1 (3)	4.00	4.07	2.00 to 4.00	28/09/2017 00:07:00	-	-	-	DRY	-	-	-	-	-	-
WS05	1	50	2	4.00		2.00 to 4.00	06/10/2017 13:10:00	1008	1008	0.0 _(I)	-	=	-	-	=	-	-
WS05	1	50	2			2.00 to 4.00	30 secs	-	-	0.0 _(SS)	-	=	-	-	-	-	-
WS05	1	50	2 (2)	4.00		2.00 to 4.00	06/10/2017 13:11:00	-	-	-	-	0.0	0.0	20.9	0.0	0	0
WS05	1	50	2 (2)			2.00 to 4.00	15 secs	-	-	-	-	0.8	0.0	20.0	0.0	1	0
WS05	1	50	2 (2)			2.00 to 4.00	30 secs	-	-	-	-	0.8	0.0	19.0	0.0	0	0
WS05	1	50	2 (2)			2.00 to 4.00	60 secs	-	-	-	-	0.8	0.0	18.8	0.0	0	0
WS05	1	50	2 (2)			2.00 to 4.00	90 secs	-	-	-	-	0.8	0.0	18.8	0.0	0	0
WS05	1	50	2 (2)			2.00 to 4.00	120 secs	-	-	-	-	0.9	0.0	18.7	0.0	0	0

Key: I = Initial, P = Peak, SS = Steady State. Note: LEL = Lower Explosive Limit = 5% v/v.

RSK Environment Abbey Park Humber Road Coventry CV3 4AQ

Ltd	
	C

Contract:

Compiled By Mostrowie

Date 26/10/17 Checked By

Date

Contract Ref:

313583

Roade Bypass

Page:

[Pressures] Previous During Start End Equipment Used & Remarks

Exploratory Position ID	Pipe ref	Pipe diameter (mm)	Monitoring Round	Reported Installation Depth (m)	Measured Installation Depth (mbgl)	Response Zone	Date & Time of Monitoring (elapsed time)	Borehole Pressure (mb)		Gas Flow (l/hr)	Water Depth (mbgl)	Carbon Dioxide (% / vol)	Methane (% / vol)	Oxygen (% / vol)	LEL (%)	Carbon Monoxide (ppm)	Hydrogen Sulphide (ppm)
WS05	1	50	2 (2)			2.00 to 4.00	180 secs	-	-	-	-	0.9	0.0	18.6	0.0	0	0
WS05	1	50	2 (2)			2.00 to 4.00	240 secs	-	-	-	-	0.9	0.0	18.6	0.0	0	0
WS05	1	50	2 (2)			2.00 to 4.00	300 secs	-	-	-	-	0.9	0.0	18.6	0.0	0	0
WS05	1	50	2 (3)	4.00	4.10	2.00 to 4.00	06/10/2017 13:17:00	-	-	-	3.99	-	-	-	-	-	-
WS05	1	50	3	4.00		2.00 to 4.00	13/10/2017 11:12:00	-	-	0.0 _(I)	-	-	-	-	-	-	-
WS05	1	50	3			2.00 to 4.00	30 secs	-	-	0.0 _(SS)	-	-	-	-	-	-	-
WS05	1	50	3 (2)	4.00		2.00 to 4.00	13/10/2017 11:13:00	-	-	-	-	0.1	0.0	20.9	-	0	0
WS05	1	50	3 (2)			2.00 to 4.00	60 secs	-	-	-	-	1.7	0.0	19.6	-	0	0
WS05	1	50	3 (2)			2.00 to 4.00	120 secs	-	-	-	-	1.6	0.0	17.3	-	0	0
WS05	1	50	3 (2)			2.00 to 4.00	150 secs	-	-	-	-	1.6	0.0	17.2	-	0	0
WS05	1	50	3 (2)			2.00 to 4.00	180 secs	-	-	-	-	1.6	0.0	17.1	-	0	0
WS05	1	50	3 (2)			2.00 to 4.00	210 secs	-	-	-	-	1.6	0.0	17.1	-	0	0
WS05	1	50	3 (2)			2.00 to 4.00	240 secs	-	-	-	-	1.6	0.0	17.1	-	0	0
WS05	1	50	3 (2)			2.00 to 4.00	300 secs	-	-	-	-	1.6	0.0	17.1	-	0	0
WS05	1	50	3 (2)			2.00 to 4.00	360 secs	-	-	-	-	1.6	0.0	17.1	-	0	0
WS05	1	50	3 (3)	4.00	4.10	2.00 to 4.00	13/10/2017 11:21:00	-	-	-	3.97	-	-	-	-	-	-
WS05	1	50	4	4.00		2.00 to 4.00	19/10/2017 11:53:00	995	995	0.0(1)	-	-	-	-	-	-	-
WS05	1	50	4			2.00 to 4.00	15 secs	-	-	0.0 _(SS)	-	-	-	-	-	-	-

Key: I = Initial, P = Peak, SS = Steady State. Note: LEL = Lower Explosive Limit = 5% v/v.

RSK

RSK Environment Ltd Abbey Park Humber Road Coventry CV3 4AQ

Compiled By	Date	Checked By	Date
Mostrowyer	26/10/17		
Contract:		·	

Roade Bypass

Contract Ref:

313583

Page:

[Pressures] Previous During Start End Equipment Used & Remarks

Exploratory Position ID	Pipe ref	Pipe diameter (mm)	Monitoring Round	Reported Installation Depth (m)	Measured Installation Depth (mbgl)	Response Zone		Borehole Pressure (mb)		Gas Flow (l/hr)	Water Depth (mbgl)	Carbon Dioxide (% / vol)	Methane (% / vol)	Oxygen (% / vol)	LEL (%)	Carbon Monoxide (ppm)	Hydrogen Sulphide (ppm)
WS05	1	50	4 (2)	4.00		2.00 to 4.00	19/10/2017 11:53:30	-	-	-	-	0.1	0.0	20.9	-	0	0
WS05	1	50	4 (2)			2.00 to 4.00	30 secs	-	-	-	-	1.8	0.0	19.2	-	0	0
WS05	1	50	4 (2)			2.00 to 4.00	90 secs	-	-	-	-	1.7	0.0	17.3	-	0	0
WS05	1	50	4 (2)			2.00 to 4.00	120 secs	-	-	-	-	1.7	0.0	17.2	-	0	0
WS05	1	50	4 (2)			2.00 to 4.00	150 secs	-	-	-	-	1.7	0.0	17.2	-	0	0
WS05	1	50	4 (2)			2.00 to 4.00	180 secs	-	-	-	-	1.7	0.0	17.2	-	0	0
WS05	1	50	4 (2)			2.00 to 4.00	210 secs	-	-	-	-	1.7	0.0	17.2	-	0	0
WS05	1	50	4 (2)			2.00 to 4.00	270 secs	-	-	-	-	1.7	0.0	17.2	-	0	0
WS05	1	50	4 (2)			2.00 to 4.00	330 secs	-	-	-	-	1.7	0.0	17.2	-	0	0
WS05	1	50	4 (3)	4.00	4.07	2.00 to 4.00	19/10/2017 12:00:00	-	-	-	3.95	-	-	-	-	-	-
WS06	1	50	1	4.00		2.00 to 4.00	28/09/2017	1020	1008	19.4 _(SS)	-	-	-	-	-	-	-
WS06	1	50	1			2.00 to 4.00	240 secs	-	-	0.2	-	-	-	-	-	-	-
WS06	1	50	1 (2)	4.00		2.00 to 4.00	28/09/2017 00:04:30	-	-	-	-	0.0	0.0	20.9	0.0	0	0
WS06	1	50	1 (2)			2.00 to 4.00	15 secs	-	-	-	-	1.2	0.0	18.5	0.0	2	0
WS06	1	50	1 (2)			2.00 to 4.00	30 secs	-	-	-	-	1.2	0.0	17.9	0.0	2	0
WS06	1	50	1 (2)			2.00 to 4.00	60 secs	-	-	-	-	1.2	0.0	17.9	0.0	2	0
WS06	1	50	1 (2)			2.00 to 4.00	90 secs	-	-	-	-	1.2	0.0	17.9	0.0	2	0

Key: I = Initial, P = Peak, SS = Steady State. Note: LEL = Lower Explosive Limit = 5% v/v.

RSK

RSK Environment Ltd Abbey Park Humber Road Coventry CV3 4AQ

Ltd	
	Con

Compiled By

MDStrewje

Contract:

Date **26/10/17**

Checked By

Date

Contract Ref:

313583

Page:

Roade Bypass

28

[Pressures] Previous During End Equipment Used & Remarks Start

Exploratory Position ID	Pipe ref	Pipe diameter (mm)	Monitoring Round	Reported Installation Depth (m)	Measured Installation Depth (mbgl)	Response Zone	Date & Time of Monitoring (elapsed time)	Borehole Pressure (mb)		Gas Flow (I/hr)	Water Depth (mbgl)	Carbon Dioxide (% / vol)	Methane (% / vol)	Oxygen (% / vol)	LEL (%)	Carbon Monoxide (ppm)	Hydrogen Sulphide (ppm)
WS06	1	50	1 (2)			2.00 to 4.00	120 secs	-	-	-	-	1.2	0.0	17.9	0.0	2	0
WS06	1	50	1 (2)			2.00 to 4.00	180 secs	-	-	-	-	1.2	0.0	17.9	0.0	2	0
WS06	1	50	1 (2)			2.00 to 4.00	240 secs	-	-	1	-	1.2	0.0	17.8	0.0	2	0
WS06	1	50	1 (2)			2.00 to 4.00	300 secs	-	-	1	-	1.2	0.0	17.8	0.0	2	0
WS06	1	50	1 (3)	4.00	4.18	2.00 to 4.00	28/09/2017 00:10:30	-	-	-	2.45	-	-	-	-	-	-
WS06	1	50	2	4.00		2.00 to 4.00	05/10/2017 12:40:00	1009	1008	2.2 _(I)	-	-	-	-	-	-	-
WS06	1	50	2			2.00 to 4.00	120 secs	-	-	0.1 _(SS)	-	-	-	-	-	-	-
WS06	1	50	2 (2)	4.00		2.00 to 4.00	05/10/2017 12:43:00	-	-	-	-	0.0	0.0	20.9	0.0	0	0
WS06	1	50	2 (2)			2.00 to 4.00	15 secs	-	-	-	-	1.1	0.0	19.3	0.0	2	0
WS06	1	50	2 (2)			2.00 to 4.00	30 secs	-	-	-	-	1.1	0.0	18.4	0.0	2	0
WS06	1	50	2 (2)			2.00 to 4.00	60 secs	-	-	-	-	1.1	0.0	18.3	0.0	2	0
WS06	1	50	2 (2)			2.00 to 4.00	90 secs	-	-	-	-	1.1	0.0	18.2	0.0	2	0
WS06	1	50	2 (2)			2.00 to 4.00	120 secs	-	-	-	-	1.1	0.0	18.2	0.0	2	0
WS06	1	50	2 (2)			2.00 to 4.00	180 secs	-	-	-	-	1.1	0.0	18.2	0.0	2	0
WS06	1	50	2 (2)			2.00 to 4.00	240 secs	-	-	-	-	1.1	0.0	18.2	0.0	2	0
WS06	1	50	2 (2)			2.00 to 4.00	300 secs	-	-	-	-	1.1	0.0	18.3	0.0	2	0
WS06	1	50	2 (3)	4.00	4.18	2.00 to 4.00	05/10/2017 12:49:00	-	-	-	2.36	-	-	-	-	-	-
WS06	1	50	3	4.00		2.00 to 4.00	13/10/2017 10:55:00	1007	1007	-1.1 _(I)	-	-	-	-	-	-	-

Key: I = Initial, P = Peak, SS = Steady State. Note: LEL = Lower Explosive Limit = 5% v/v.

RSK Environment Abbey Park Humber Road Coventry CV3 4AQ

Ltd	
	C

Contract:

Compiled By Mostrowie

Date 26/10/17

Checked By

Date

Contract Ref:

313583

Page:

Roade Bypass

[Pressures] Previous During End Equipment Used & Remarks Start

Exploratory Position ID	Pipe ref	Pipe diameter (mm)	Monitoring Round	Reported Installation Depth (m)	Measured Installation Depth (mbgl)	Response Zone	Date & Time of Monitoring (elapsed time)	Borehole Pressure (mb)		Gas Flow (I/hr)	Water Depth (mbgl)	Carbon Dioxide (% / vol)	Methane (% / vol)	Oxygen (% / vol)	LEL (%)	Carbon Monoxide (ppm)	Hydrogen Sulphide (ppm)
WS06	1	50	3			2.00 to 4.00	30 secs	-	-	-0.1 _(SS)	-	-	-	-	-	-	-
WS06	1	50	3 (2)	4.00		2.00 to 4.00	13/10/2017 10:56:00	-	-	-	-	0.0	0.0	20.9	0.0	0	0
WS06	1	50	3 (2)			2.00 to 4.00	15 secs	-	-	=	-	0.9	0.0	19.7	0.0	2	0
WS06	1	50	3 (2)			2.00 to 4.00	30 secs	-	-	-	-	1.0	0.0	18.8	0.0	3	0
WS06	1	50	3 (2)			2.00 to 4.00	60 secs	-	-	-	-	1.0	0.0	18.7	0.0	3	0
WS06	1	50	3 (2)			2.00 to 4.00	90 secs	-	-	-	-	1.0	0.0	18.7	0.0	3	0
WS06	1	50	3 (2)			2.00 to 4.00	120 secs	-	-	-	-	1.0	0.0	18.7	0.0	3	0
WS06	1	50	3 (2)			2.00 to 4.00	180 secs	-	-	-	-	1.0	0.0	18.6	0.0	3	0
WS06	1	50	3 (2)			2.00 to 4.00	240 secs	-	-	-	-	1.0	0.0	18.6	0.0	3	0
WS06	1	50	3 (2)			2.00 to 4.00	300 secs	-	-	-	-	1.0	0.0	18.6	0.0	3	0
WS06	1	50	3 (3)	4.00	4.17	2.00 to 4.00	13/10/2017 11:02:00	-	-	-	2.40	-	-	-	=	-	-
WS06	1	50	4	4.00		2.00 to 4.00	19/10/2017 11:35:00	996	996	0.1 _(I)	-	-	-	-	-	-	-
WS06	1	50	4			2.00 to 4.00	30 secs	-	-	0.1 _(SS)	-	-	-	-	-	-	-
WS06	1	50	4 (2)	4.00		2.00 to 4.00	19/10/2017 11:36:00	-	-	-	-	0.1	0.0	20.9	-	0	0
WS06	1	50	4 (2)			2.00 to 4.00	15 secs	-	-	-		1.4	0.0	20.2	-	0	0
WS06	1	50	4 (2)			2.00 to 4.00	30 secs	-	-	-	ı	1.4	0.0	18.7	-	0	0
WS06	1	50	4 (2)			2.00 to 4.00	60 secs	-	-	-	-	1.4	0.0	18.6	-	0	0
WS06	1	50	4 (2)			2.00 to 4.00	90 secs	-	-	-	-	1.4	0.0	18.6	-	0	0

Key: I = Initial, P = Peak, SS = Steady State. Note: LEL = Lower Explosive Limit = 5% v/v.

RSK Environment Ltd Abbey Park Humber Road Coventry CV3 4AQ

4	C
J	Mrs
	יטן ו
	Contract:

	Compiled By
	Mostrowger
$\overline{}$	

Date 26/10/17

Checked By

Contract Ref:

313583

Roade Bypass

Page:

Date

[Pressures] Previous During Start End Equipment Used & Remarks

Exploratory Position ID	Pipe ref	Pipe diameter (mm)	Monitoring Round	Reported Installation Depth (m)	Measured Installation Depth (mbgl)	Response Zone	Date & Time of Monitoring (elapsed time)	Borehole Pressure (mb)		Gas Flow (l/hr)	Water Depth (mbgl)	Carbon Dioxide (% / vol)	Methane (% / vol)	Oxygen (% / vol)	LEL (%)	Carbon Monoxide (ppm)	Hydrogen Sulphide (ppm)
WS06	1	50	4 (2)			2.00 to 4.00	120 secs	-	-	-	-	1.4	0.0	18.6	-	0	0
WS06	1	50	4 (2)			2.00 to 4.00	180 secs	-	-	=	-	1.4	0.0	18.7	-	0	0
WS06	1	50	4 (2)			2.00 to 4.00	240 secs	-	-	-	-	1.3	0.0	18.7	-	0	0
WS06	1	50	4 (2)			2.00 to 4.00	300 secs	-	-	-	-	1.3	0.0	18.7	-	0	0
WS06	1	50	4 (2)			2.00 to 4.00	360 secs	-	-	-	-	1.3	0.0	18.8	-	0	0
WS06	1	50	4 (3)	4.00	4.29	2.00 to 4.00	19/10/2017 11:43:00	-	-	-	2.62	-	-	-	-	-	-
WS07	1	50	1	2.50		1.00 to 2.50	28/09/2017	1008	1008	-0.1 _(I)	-	-	-	-	-	-	-
WS07	1	50	1			1.00 to 2.50	30 secs	-	-	-0.1 _(SS)	-	-	-	-	-	-	-
WS07	1	50	1 (2)	2.50		1.00 to 2.50	28/09/2017 00:01:00	-	-	-	-	0.0	0.0	20.9	0.0	0	0
WS07	1	50	1 (2)			1.00 to 2.50	15 secs	-	-	-	-	1.4	0.0	17.2	0.0	1	0
WS07	1	50	1 (2)			1.00 to 2.50	30 secs	-	-	-	-	1.4	0.0	14.0	0.0	0	0
WS07	1	50	1 (2)			1.00 to 2.50	60 secs	-	-	-	-	1.4	0.0	13.7	0.0	0	0
WS07	1	50	1 (2)			1.00 to 2.50	90 secs	-	-	-	-	1.4	0.0	13.7	0.0	0	0
WS07	1	50	1 (2)			1.00 to 2.50	120 secs	-	-	-	-	1.4	0.0	13.7	0.0	0	0
WS07	1	50	1 (2)			1.00 to 2.50	180 secs	-	-	-	-	1.4	0.0	13.6	0.0	0	0
WS07	1	50	1 (2)			1.00 to 2.50	240 secs	-	-	-	-	1.4	0.0	13.5	0.0	0	0
WS07	1	50	1 (2)			1.00 to 2.50	300 secs	-	-	-	-	1.4	0.0	13.5	0.0	0	0

Key: I = Initial, P = Peak, SS = Steady State. Note: LEL = Lower Explosive Limit = 5% v/v.

RSK

RSK Environment Ltd Abbey Park Humber Road Coventry CV3 4AQ

Ltd	
	Coı

Compiled By

MDStrewger

Contract:

Date **26/10/17**

Roade Bypass

Checked By

Date

313583

Page:

Contract Ref:

0.4

[Pressures] Previous During End Equipment Used & Remarks Start

Exploratory Position ID	Pipe ref	Pipe diameter (mm)	Monitoring Round	Reported Installation Depth (m)	Measured Installation Depth (mbgl)	Response Zone	Date & Time of Monitoring (elapsed time)	Borehole Pressure (mb)		Gas Flow (l/hr)	Water Depth (mbgl)	Carbon Dioxide (% / vol)	Methane (% / vol)	Oxygen (% / vol)	LEL (%)	Carbon Monoxide (ppm)	Hydrogen Sulphide (ppm)
WS07	1	50	1 (3)	2.50	2.53	1.00 to 2.50	28/09/2017 00:07:00	-	-	-	1.91	-	-	-	-	-	-
WS07	1	50	2	2.50		1.00 to 2.50	05/10/2017 12:25:00	1008	1008	0.1 _(I)	-	-	-	-	-	-	-
WS07	1	50	2			1.00 to 2.50	30 secs	-	-	0.1 _(SS)	-	-	-	-	-	-	-
WS07	1	50	2 (2)	2.50		1.00 to 2.50	05/10/2017 12:26:00	-	-	-	-	0.0	0.0	20.9	0.0	0	0
WS07	1	50	2 (2)			1.00 to 2.50	15 secs	-	-	-	-	1.8	0.0	17.3	0.0	0	0
WS07	1	50	2 (2)			1.00 to 2.50	30 secs	-	-	-	-	1.8	0.0	12.9	0.0	0	0
WS07	1	50	2 (2)			1.00 to 2.50	60 secs	-	-	-	-	1.8	0.0	12.5	0.0	0	0
WS07	1	50	2 (2)			1.00 to 2.50	90 secs	-	-	-	-	1.8	0.0	12.5	0.0	0	0
WS07	1	50	2 (2)			1.00 to 2.50	120 secs	-	-	-	-	1.8	0.0	12.5	0.0	0	0
WS07	1	50	2 (2)			1.00 to 2.50	180 secs	-	-	-	-	1.8	0.0	12.5	0.0	0	0
WS07	1	50	2 (2)			1.00 to 2.50	240 secs	-	-	-	-	1.8	0.0	12.4	0.0	0	0
WS07	1	50	2 (2)			1.00 to 2.50	300 secs	-	-	-	-	1.8	0.0	12.5	0.0	0	0
WS07	1	50	2 (3)	2.50	2.54	1.00 to 2.50	05/10/2017 12:32:00	-	-	-	1.94	-	-	-	-	-	-
WS07	1	50	3	2.50		1.00 to 2.50	13/10/2017 10:45:00	1007	1007	0.0 _(I)	-	-	-	-	-	-	-
WS07	1	50	3			1.00 to 2.50	30 secs	-	-	0.0 _(SS)	-	-	-	-	-	-	-
WS07	1	50	3 (2)	2.50		1.00 to 2.50	13/10/2017 10:46:00	-	-	-	-	0.0	0.0	20.9	0.0	0	0
WS07	1	50	3 (2)			1.00 to 2.50	15 secs	-	-	-	-	1.8	0.0	18.1	0.0	0	0
WS07	1	50	3 (2)			1.00 to 2.50	30 secs	-	-	-	-	1.9	0.0	15.4	0.0	0	0

Key: I = Initial, P = Peak, SS = Steady State. Note: LEL = Lower Explosive Limit = 5% v/v.

RSK Environment Ltd Abbey Park Humber Road Coventry CV3 4AQ

Compile
Mostro
Contract:

Compiled By	_
Mostrowie	

Date 26/10/17 Checked By

Date

313583

Page:

Contract Ref:

[Pressures] Previous During Start End Equipment Used & Remarks

Exploratory Position ID	Pipe ref	Pipe diameter (mm)	Monitoring Round	Reported Installation Depth (m)	Measured Installation Depth (mbgl)	Response Zone	Date & Time of Monitoring (elapsed time)	Borehole Pressure (mb)		Gas Flow (l/hr)	Water Depth (mbgl)	Carbon Dioxide (% / vol)	Methane (% / vol)	Oxygen (% / vol)	LEL (%)	Carbon Monoxide (ppm)	Hydrogen Sulphide (ppm)
WS07	1	50	3 (2)			1.00 to 2.50	60 secs	-	-	-	-	1.9	0.0	15.1	0.0	0	0
WS07	1	50	3 (2)			1.00 to 2.50	90 secs	-	-	-	-	1.9	0.0	15.0	0.0	0	0
WS07	1	50	3 (2)			1.00 to 2.50	120 secs	-	-	-	-	1.9	0.0	15.0	0.0	0	0
WS07	1	50	3 (2)			1.00 to 2.50	180 secs	-	-	-	-	1.9	0.0	15.1	0.0	0	0
WS07	1	50	3 (2)			1.00 to 2.50	240 secs	-	-	-	-	1.9	0.0	15.1	0.0	0	0
WS07	1	50	3 (2)			1.00 to 2.50	300 secs	-	-	-	-	1.9	0.0	15.1	0.0	0	0
WS07	1	50	3 (3)	2.50	2.54	1.00 to 2.50	13/10/2017 10:52:00	-	-	-	2.05	-	-	-	-	-	-
WS07	1	50	4	2.50		1.00 to 2.50	19/10/2017 11:26:00	996	996	0.3 _(I)	-	-	-	-	-	-	-
WS07	1	50	4			1.00 to 2.50	15 secs	-	-	0.3 _(SS)	-	-	-	-	-	-	-
WS07	1	50	4 (2)	2.50		1.00 to 2.50	19/10/2017 11:26:30	-	-	-	-	0.1	0.0	20.8	-	0	0
WS07	1	50	4 (2)			1.00 to 2.50	30 secs	-	-	-	-	1.9	0.0	19.5	=	0	0
WS07	1	50	4 (2)			1.00 to 2.50	60 secs	-	-	-	-	1.8	0.0	17.1	-	0	0
WS07	1	50	4 (2)			1.00 to 2.50	90 secs	-	-	-	-	1.8	0.0	17.1	-	0	0
WS07	1	50	4 (2)			1.00 to 2.50	120 secs	-	-	-	-	1.8	0.0	17.1	-	0	0
WS07	1	50	4 (2)			1.00 to 2.50	150 secs	-	-	-	-	1.8	0.0	17.1		0	0
WS07	1	50	4 (2)			1.00 to 2.50	210 secs	-	-	-	-	1.8	0.0	17.1	-	0	0
WS07	1	50	4 (2)			1.00 to 2.50	270 secs	-	-	-	-	1.8	0.0	17.2	-	0	0
WS07	1	50	4 (2)			1.00 to 2.50	330 secs	-	-	-	-	1.8	0.0	17.2	-	0	0

Key: I = Initial, P = Peak, SS = Steady State. Note: LEL = Lower Explosive Limit = 5% v/v.

RSK Environment Ltd Abbey Park Humber Road Coventry CV3 4AQ

Compiled By
Mostrowyer
Contract:

Date Checked By 26/10/17

Contract Ref: Date

Page:

313583

Roade Bypass

[Pressures] Previous During End Equipment Used & Remarks Start

Exploratory Position ID	Pipe ref	Pipe diameter (mm)	Monitoring Round	Reported Installation Depth (m)	Measured Installation Depth (mbgl)	Response Zone	Date & Time of Monitoring (elapsed time)	Borehole Pressure (mb)		Gas Flow (l/hr)	Water Depth (mbgl)	Carbon Dioxide (% / vol)	Methane (% / vol)	Oxygen (% / vol)	LEL (%)	Carbon Monoxide (ppm)	Hydrogen Sulphide (ppm)
WS07	1	50	4 (3)	2.50	2.54	1.00 to 2.50	19/10/2017 11:33:00	-	-	-	2.07	-	-	-	=	-	-
WS08	1	50	1	3.00		1.00 to 3.00	28/09/2017	1008	1008	0.0 _(I)	-	-	-	-	-	-	-
WS08	1	50	1			1.00 to 3.00	30 secs	-	-	0.0 _(SS)	-	-	-	-	-	-	-
WS08	1	50	1 (2)	3.00		1.00 to 3.00	28/09/2017 00:01:00	-	-	-	-	0.0	0.0	20.9	0.0	0	0
WS08	1	50	1 (2)			1.00 to 3.00	15 secs	-	-	-	-	2.4	0.0	18.0	0.0	2	0
WS08	1	50	1 (2)			1.00 to 3.00	30 secs	-	-	-	-	2.4	0.0	15.3	0.0	0	0
WS08	1	50	1 (2)			1.00 to 3.00	60 secs	-	-	-	-	2.5	0.0	15.1	0.0	0	0
WS08	1	50	1 (2)			1.00 to 3.00	90 secs	-	-	-	-	2.5	0.0	15.0	0.0	0	0
WS08	1	50	1 (2)			1.00 to 3.00	120 secs	-	-	-	-	2.4	0.0	15.0	0.0	0	0
WS08	1	50	1 (2)			1.00 to 3.00	180 secs	-	-	-	-	2.4	0.0	14.9	0.0	0	0
WS08	1	50	1 (2)			1.00 to 3.00	240 secs	-	-	-	-	2.4	0.0	14.8	0.0	0	0
WS08	1	50	1 (2)			1.00 to 3.00	300 secs	-	-	-	-	2.4	0.0	14.8	0.0	0	0
WS08	1	50	1 (3)	3.00	3.10	1.00 to 3.00	28/09/2017 00:07:00	-	-	-	2.65	-	-	-	-	-	-
WS08	1	50	2	3.00		1.00 to 3.00	05/10/2017 12:15:00	1008	1008	0.0 _(I)	-	-	-	-	-	-	-
WS08	1	50	2			1.00 to 3.00	30 secs	-	-	0.0 _(SS)	-	-	-	-	-	-	-
WS08	1	50	2 (2)	3.00		1.00 to 3.00	05/10/2017 12:16:00	-	-	-	-	0.0	0.0	20.9	0.0	0	0
WS08	1	50	2 (2)			1.00 to 3.00	15 secs	-	-	-	-	1.8	0.0	20.1	0.0	1	0

Key: I = Initial, P = Peak, SS = Steady State. Note: LEL = Lower Explosive Limit = 5% v/v.

RSK Environment Ltd Abbey Park Humber Road Coventry CV3 4AQ

Н	C
u	MIX
	HD.
	Contract:

Compiled By	
Mostrowser	_

Date 26/10/17

Roade Bypass

Checked By

Date

313583

Page:

Contract Ref:

[Pressures] Previous During End Equipment Used & Remarks Start

Exploratory Position ID	Pipe ref	Pipe diameter (mm)	Monitoring Round	Reported Installation Depth (m)	Measured Installation Depth (mbgl)	Response Zone	Date & Time of Monitoring (elapsed time)	Borehole Pressure (mb)		Gas Flow (I/hr)	Water Depth (mbgl)	Carbon Dioxide (% / vol)	Methane (% / vol)	Oxygen (% / vol)	LEL (%)	Carbon Monoxide (ppm)	Hydrogen Sulphide (ppm)
WS08	1	50	2 (2)			1.00 to 3.00	30 secs	-	-	-	-	1.8	0.0	19.5	0.0	0	0
WS08	1	50	2 (2)			1.00 to 3.00	60 secs	-	-	-	-	1.8	0.0	19.4	0.0	0	0
WS08	1	50	2 (2)			1.00 to 3.00	90 secs	-	-	-	-	1.8	0.0	19.4	0.0	0	0
WS08	1	50	2 (2)			1.00 to 3.00	120 secs	-	-	-	-	1.8	0.0	19.4	0.0	0	0
WS08	1	50	2 (2)			1.00 to 3.00	180 secs	-	-	-	-	1.8	0.0	19.4	0.0	0	0
WS08	1	50	2 (2)			1.00 to 3.00	240 secs	-	-	-	-	1.8	0.0	19.4	0.0	0	0
WS08	1	50	2 (2)			1.00 to 3.00	300 secs	-	-	-	-	1.8	0.0	19.4	0.0	0	0
WS08	1	50	2 (3)	3.00	3.09	1.00 to 3.00	05/10/2017 12:22:00	-	-	-	2.66	-	-	-	-	-	-
WS08	1	50	3	3.00		1.00 to 3.00	13/10/2017 13:35:00	1007	1007	0.0(1)	-	-	-	-	-	-	-
WS08	1	50	3			1.00 to 3.00	30 secs	-	-	0.0 _(SS)	-	-	-	-	-	-	-
WS08	1	50	3 (2)	3.00		1.00 to 3.00	13/10/2017 13:36:00	-	-	-	-	0.0	0.0	20.9	0.0	0	0
WS08	1	50	3 (2)			1.00 to 3.00	15 secs	-	-	-	-	1.8	0.0	19.7	0.0	0	0
WS08	1	50	3 (2)			1.00 to 3.00	30 secs	-	-	-	-	1.8	0.0	18.9	0.0	0	0
WS08	1	50	3 (2)			1.00 to 3.00	60 secs	-	-	-	-	1.8	0.0	18.8	0.0	0	0
WS08	1	50	3 (2)			1.00 to 3.00	90 secs	-	-	-	-	1.9	0.0	18.8	0.0	0	0
WS08	1	50	3 (2)			1.00 to 3.00	120 secs	-	-	-	-	1.9	0.0	18.8	0.0	0	0
WS08	1	50	3 (2)			1.00 to 3.00	180 secs	-	-	-	-	1.9	0.0	18.8	0.0	0	0
WS08	1	50	3 (2)			1.00 to 3.00	240 secs	-	-	-	-	1.9	0.0	18.8	0.0	0	0

Key: I = Initial, P = Peak, SS = Steady State. Note: LEL = Lower Explosive Limit = 5% v/v.

RSK Environment Ltd Abbey Park Humber Road Coventry CV3 4AQ

1	Co
4	MDS
	Contract:

Compiled By	
Mostrowije	_

Date 26/10/17 Checked By

Date

Contract Ref:

313583

Page:

Roade Bypass

[Pressures] Previous During Start End Equipment Used & Remarks

Exploratory Position ID	Pipe ref	Pipe diameter (mm)	Monitoring Round	Reported Installation Depth (m)	Measured Installation Depth (mbgl)	Response Zone	Date & Time of Monitoring (elapsed time)	Borehole Pressure (mb)		Gas Flow (I/hr)	Water Depth (mbgl)	Carbon Dioxide (% / vol)	Methane (% / vol)	Oxygen (% / vol)	LEL (%)	Carbon Monoxide (ppm)	Hydrogen Sulphide (ppm)
WS08	1	50	3 (2)			1.00 to 3.00	300 secs	-	-	-	-	1.9	0.0	18.8	0.0	0	0
WS08	1	50	3 (3)	3.00	3.09	1.00 to 3.00	13/10/2017 13:42:00	-	-	-	2.68	-	-	-	-	-	-
WS08	1	50	4	3.00		1.00 to 3.00	19/10/2017 11:17:00	996	996	0.1 _(I)	-	-	-	-	-	-	-
WS08	1	50	4			1.00 to 3.00	15 secs	-	-	0.1 _(SS)	-	-	-	-	-	-	-
WS08	1	50	4 (2)	3.00		1.00 to 3.00	19/10/2017 11:17:30	-	-	-	-	0.1	0.0	20.9	-	0	0
WS08	1	50	4 (2)			1.00 to 3.00	30 secs	-	-	-	-	2.3	0.0	18.3	-	1	0
WS08	1	50	4 (2)			1.00 to 3.00	60 secs	-	-	-	-	2.1	0.0	16.9	-	1	0
WS08	1	50	4 (2)			1.00 to 3.00	90 secs	-	-	ı	-	2.1	0.0	16.9	=	1	0
WS08	1	50	4 (2)			1.00 to 3.00	120 secs	-	-	ı	-	2.1	0.0	17.0	-	1	0
WS08	1	50	4 (2)			1.00 to 3.00	150 secs	-	-	-	-	2.1	0.0	17.0	-	1	0
WS08	1	50	4 (2)			1.00 to 3.00	210 secs	-	-	-	-	2.1	0.0	17.1	=	1	0
WS08	1	50	4 (2)			1.00 to 3.00	270 secs	-	-	-	-	2.1	0.0	17.2	-	1	0
WS08	1	50	4 (2)			1.00 to 3.00	330 secs	-	-	-	-	2.1	0.0	17.3	-	1	0
WS08	1	50	4 (3)	3.00	3.09	1.00 to 3.00	19/10/2017 11:24:00	-	-	-	2.70	-	-	-	-	-	-
WS09	1	50	1	3.00		1.00 to 3.00	28/09/2017 13:13:00	1006	1006	0.1 _(I)	-	-	-	-	-	-	-
WS09	1	50	1			1.00 to 3.00	30 secs	-	-	0.1 _(SS)	-	-	-	-	-	-	-
WS09	1	50	1 (2)	3.00		1.00 to 3.00	28/09/2017 13:14:00	-	-	1	-	0.0	0.0	20.9	0.0	0	0

Key: I = Initial, P = Peak, SS = Steady State. Note: LEL = Lower Explosive Limit = 5% v/v.

RSK Environment Abbey Park Humber Road Coventry

CV3 4AQ

	Ltd	
	Ltd	•
c		

Contract:

Compiled By
Mostrowije

Date 26/10/17

Roade Bypass

Checked By

Date

Contract Ref:

313583

Page:

[Pressures] Previous During End Equipment Used & Remarks Start

Exploratory Position ID	Pipe ref	Pipe diameter (mm)	Monitoring Round	Reported Installation Depth (m)	Measured Installation Depth (mbgl)	Response Zone	Date & Time of Monitoring (elapsed time)	Borehole Pressure (mb)		Gas Flow (I/hr)	Water Depth (mbgl)	Carbon Dioxide (% / vol)	Methane (% / vol)	Oxygen (% / vol)	LEL (%)	Carbon Monoxide (ppm)	Hydrogen Sulphide (ppm)
WS09	1	50	1 (2)			1.00 to 3.00	15 secs	-	-	-	-	1.0	0.0	19.6	0.0	0	0
WS09	1	50	1 (2)			1.00 to 3.00	30 secs	-	-	-	-	0.9	0.0	19.4	0.0	0	0
WS09	1	50	1 (2)			1.00 to 3.00	60 secs	-	-	-	-	0.9	0.0	19.4	0.0	0	0
WS09	1	50	1 (2)			1.00 to 3.00	90 secs	-	-	-	-	0.9	0.0	19.4	0.0	0	0
WS09	1	50	1 (2)			1.00 to 3.00	120 secs	-	-	-	-	0.9	0.0	19.4	0.0	0	0
WS09	1	50	1 (2)			1.00 to 3.00	180 secs	-	-	-	-	0.9	0.0	19.4	0.0	0	0
WS09	1	50	1 (2)			1.00 to 3.00	240 secs	-	-	-	-	0.9	0.0	19.5	0.0	0	0
WS09	1	50	1 (2)			1.00 to 3.00	300 secs	-	-	-	-	0.9	0.0	19.5	0.0	0	0
WS09	1	50	1 (3)	3.00	3.07	1.00 to 3.00	28/09/2017 13:20:00	-	-	-	DRY	-	-	-	-	-	-
WS09	1	50	2	3.00		1.00 to 3.00	06/10/2017 12:47:00	1003	1003	0.0 _(I)	-	-	-	-	-	-	-
WS09	1	50	2			1.00 to 3.00	30 secs	-	-	0.0 _(SS)	-	-	-	-	=	-	-
WS09	1	50	2 (2)	3.00		1.00 to 3.00	06/10/2017 12:48:00	-	-	-	-	0.0	0.0	20.9	0.0	0	0
WS09	1	50	2 (2)			1.00 to 3.00	15 secs	-	-	-	-	0.5	0.0	20.3	0.0	0	0
WS09	1	50	2 (2)			1.00 to 3.00	30 secs	-	-	-	-	0.5	0.0	20.2	0.0	0	0
WS09	1	50	2 (2)			1.00 to 3.00	60 secs	-	-	-	-	0.5	0.0	20.2	0.0	0	1
WS09	1	50	2 (2)			1.00 to 3.00	90 secs	-	-	-	-	0.5	0.0	20.2	0.0	0	1
WS09	1	50	2 (2)			1.00 to 3.00	120 secs	-	-	-	-	0.5	0.0	20.2	0.0	0	1
WS09	1	50	2 (2)			1.00 to 3.00	180 secs	-	-	-	-	0.5	0.0	20.2	0.0	0	1

Key: I = Initial, P = Peak, SS = Steady State. Note: LEL = Lower Explosive Limit = 5% v/v.

RSK Environment Abbey Park Humber Road Coventry CV3 4AQ

Ltd	
	_
	Со
	1

Compiled By ontract:

Mostrowije

Date 26/10/17 Checked By

Date

Contract Ref:

313583

Page:

Roade Bypass

[Pressures] Previous During Start End Equipment Used & Remarks

Exploratory Position ID	Pipe ref	Pipe diameter (mm)	Monitoring Round	Reported Installation Depth (m)	Measured Installation Depth (mbgl)	Response Zone	Date & Time of Monitoring (elapsed time)	Borehole Pressure (mb)		Gas Flow (I/hr)	Water Depth (mbgl)	Carbon Dioxide (% / vol)	Methane (% / vol)	Oxygen (% / vol)	LEL (%)	Carbon Monoxide (ppm)	Hydrogen Sulphide (ppm)
WS09	1	50	2 (2)			1.00 to 3.00	240 secs	-	-	-	-	0.5	0.0	20.2	0.0	0	1
WS09	1	50	2 (2)			1.00 to 3.00	300 secs	-	-	=	-	0.5	0.0	20.2	0.0	0	1
WS09	1	50	2 (3)	3.00	3.07	1.00 to 3.00	06/10/2017 12:54:00	-	-	-	DRY	-	-	-	-	-	-
WS09	1	50	3	3.00		1.00 to 3.00	13/10/2017 11:45:00	1010	1010	0.0 _(I)	-	-	-	-	-	-	-
WS09	1	50	3			1.00 to 3.00	30 secs	-	-	0.0 _(SS)	-	-	-	-	-	-	-
WS09	1	50	3 (2)	3.00		1.00 to 3.00	13/10/2017 11:46:00	-	-	-	-	0.1	0.0	20.9	-	0	0
WS09	1	50	3 (2)			1.00 to 3.00	60 secs	-	-	-	-	0.6	0.0	20.8	-	0	0
WS09	1	50	3 (2)			1.00 to 3.00	90 secs	-	-	-	-	0.5	0.0	20.4	-	0	0
WS09	1	50	3 (2)			1.00 to 3.00	120 secs	-	-	-	-	0.5	0.0	20.4	-	0	0
WS09	1	50	3 (2)			1.00 to 3.00	180 secs	-	-	-	-	0.5	0.0	20.4	-	0	0
WS09	1	50	3 (2)			1.00 to 3.00	210 secs	-	-	-	-	0.5	0.0	20.4	=	0	0
WS09	1	50	3 (2)			1.00 to 3.00	240 secs	-	-	-	-	0.5	0.0	20.4	-	0	0
WS09	1	50	3 (2)			1.00 to 3.00	300 secs	-	-	-	-	0.5	0.0	20.4	-	0	0
WS09	1	50	3 (2)			1.00 to 3.00	360 secs	-	-	-	-	0.5	0.0	20.4	-	0	0
WS09	1	50	3 (2)			1.00 to 3.00	420 secs	-	-	-	-	0.5	0.0	20.4	-	0	0
WS09	1	50	3 (3)	3.00	3.09	1.00 to 3.00	13/10/2017 11:56:00	-	-	-	3.09	-	-	-	-	-	-
WS09	1	50	4	3.00		1.00 to 3.00	19/10/2017 12:13:00	994	994	0.0 _(I)	-	-	-	-	-	-	-
WS09	1	50	4			1.00 to 3.00	30 secs	-	-	0.0 _(SS)	-	-	-	-	-	-	-

Key: I = Initial, P = Peak, SS = Steady State. Note: LEL = Lower Explosive Limit = 5% v/v.

RSK Environment Ltd Abbey Park Humber Road Coventry CV3 4AQ

Compiled I
MDStreek,
Contract:

Compiled By	
Mostrowije	1

Date 26/10/17

Checked By

Contract Ref: Date

313583

Page:

Roade Bypass

[Pressures] Previous During End Equipment Used & Remarks Start

Exploratory Position ID	Pipe ref	Pipe diameter (mm)	Monitoring Round	Reported Installation Depth (m)	Measured Installation Depth (mbgl)	Response Zone	Date & Time of Monitoring (elapsed time)	Borehole Pressure (mb)		Gas Flow (I/hr)	Water Depth (mbgl)	Carbon Dioxide (% / vol)	Methane (% / vol)	Oxygen (% / vol)	LEL (%)	Carbon Monoxide (ppm)	Hydrogen Sulphide (ppm)
WS09	1	50	4 (2)	3.00		1.00 to 3.00	19/10/2017 12:13:45	-	-	-	-	0.1	0.0	20.9	-	0	0
WS09	1	50	4 (2)			1.00 to 3.00	15 secs	-	-	-	-	1.0	0.0	20.3	-	0	0
WS09	1	50	4 (2)			1.00 to 3.00	75 secs	-	-	1	-	1.0	0.0	18.5	-	0	0
WS09	1	50	4 (2)			1.00 to 3.00	105 secs	-	-	-	-	1.0	0.0	18.5	-	0	0
WS09	1	50	4 (2)			1.00 to 3.00	135 secs	-	-	-	-	1.0	0.0	18.5	-	0	0
WS09	1	50	4 (2)			1.00 to 3.00	165 secs	-	-	-	-	1.0	0.0	18.5	-	0	0
WS09	1	50	4 (2)			1.00 to 3.00	195 secs	-	-	•	-	1.0	0.0	18.5	-	0	0
WS09	1	50	4 (2)			1.00 to 3.00	255 secs	-	-	ı	-	1.0	0.0	18.5	-	0	0
WS09	1	50	4 (2)			1.00 to 3.00	315 secs	-	-	-	-	1.0	0.0	18.5	-	0	0
WS09	1	50	4 (3)	3.00	3.08	1.00 to 3.00	19/10/2017 12:21:00	-	-	I	3.08	-	ı	-	-	-	-
WS10	1	50	1	4.00		2.00 to 4.00	28/09/2017	1006	1006	0.0 _(I)	-	-	-	-	=	-	-
WS10	1	50	1			2.00 to 4.00	30 secs	-	-	0.0 _(SS)	-	-	-	-	-	-	-
WS10	1	50	1 (2)	4.00		2.00 to 4.00	28/09/2017 00:01:00	-	-	ı	-	0.0	0.0	20.9	0.0	0	0
WS10	1	50	1 (2)			2.00 to 4.00	15 secs	-	-	-	-	2.5	0.0	17.5	0.0	1	0
WS10	1	50	1 (2)			2.00 to 4.00	30 secs	-	-		ı	2.5	0.0	14.8	0.0	1	0
WS10	1	50	1 (2)			2.00 to 4.00	60 secs	-	-	-	-	2.5	0.0	14.5	0.0	1	0
WS10	1	50	1 (2)			2.00 to 4.00	90 secs	-	_	-	_	2.5	0.0	14.5	0.0	1	0

Key: I = Initial, P = Peak, SS = Steady State. Note: LEL = Lower Explosive Limit = 5% v/v.

RSK Environment Ltd Abbey Park Humber Road Coventry CV3 4AQ

4	Co
,	MDS
	Contract:

		Сотпріїеа ву
		Mostrowije
_	-	

Date 26/10/17 Checked By

Date

Contract Ref:

313583

Roade Bypass

Page:

[Pressures] Previous During End Equipment Used & Remarks Start

Exploratory Position ID	Pipe ref	Pipe diameter (mm)	Monitoring Round	Reported Installation Depth (m)	Measured Installation Depth (mbgl)	Response Zone	Date & Time of Monitoring (elapsed time)	Borehole Pressure (mb)		Gas Flow (l/hr)	Water Depth (mbgl)	Carbon Dioxide (% / vol)	Methane (% / vol)	Oxygen (% / vol)	LEL (%)	Carbon Monoxide (ppm)	Hydrogen Sulphide (ppm)
WS10	1	50	1 (2)			2.00 to 4.00	120 secs	-	-	-	-	2.5	0.0	14.6	0.0	1	0
WS10	1	50	1 (2)			2.00 to 4.00	180 secs	-	-	=	-	2.5	0.0	14.6	0.0	1	0
WS10	1	50	1 (2)			2.00 to 4.00	240 secs	-	-	-	-	2.5	0.0	14.6	0.0	1	0
WS10	1	50	1 (2)			2.00 to 4.00	300 secs	-	-	-	-	2.5	0.0	14.6	0.0	1	0
WS10	1	50	1 (3)	4.00	4.03	2.00 to 4.00	28/09/2017 00:07:00	-	-	-	3.23	-	-	-	-	-	-
WS10	1	50	2	4.00		2.00 to 4.00	05/10/2017 10:10:00	1005	1005	0.0 _(I)	-	-	-	-	-	-	-
WS10	1	50	2			2.00 to 4.00	30 secs	-	-	0.0 _(SS)	-	-	-	-	-	-	-
WS10	1	50	2 (2)	4.00		2.00 to 4.00	05/10/2017 10:11:00	-	-	-	-	0.0	0.0	20.9	0.0	0	0
WS10	1	50	2 (2)			2.00 to 4.00	15 secs	-	-	-	-	2.6	0.0	18.0	0.0	0	0
WS10	1	50	2 (2)			2.00 to 4.00	30 secs	-	-	-	-	2.6	0.0	14.7	0.0	0	0
WS10	1	50	2 (2)			2.00 to 4.00	60 secs	-	-	-	-	2.7	0.0	14.2	0.0	0	0
WS10	1	50	2 (2)			2.00 to 4.00	90 secs	-	-	-	-	2.7	0.0	14.1	0.0	0	0
WS10	1	50	2 (2)			2.00 to 4.00	120 secs	-	-	-	-	2.7	0.0	14.1	0.0	0	0
WS10	1	50	2 (2)			2.00 to 4.00	180 secs	-	-	-	-	2.7	0.0	14.1	0.0	0	0
WS10	1	50	2 (2)			2.00 to 4.00	240 secs	-	-	-	-	2.7	0.0	14.0	0.0	0	0
WS10	1	50	2 (2)			2.00 to 4.00	300 secs	-	-	-	-	2.7	0.0	14.0	0.0	0	0
WS10	1	50	2 (3)	4.00	4.04	2.00 to 4.00	05/10/2017 10:17:00	-	-	-	3.22	-	-	-	-	-	-
WS10	1	50	3	4.00		2.00 to 4.00	13/10/2017 10:36:00	1010	1010	0.0(1)	-	-	-	-	-	-	-

Key: I = Initial, P = Peak, SS = Steady State. Note: LEL = Lower Explosive Limit = 5% v/v.

RSK Environment Lt Abbey Park Humber Road Coventry CV3 4AQ

td	
lu	Mi
	Contract:

Compiled By
Mostrowser

Date 26/10/17 Checked By

Date

Contract Ref:

313583

Roade Bypass

Page:

[Pressures] Previous During End Equipment Used & Remarks Start

Exploratory Position ID	Pipe ref	Pipe diameter (mm)	Monitoring Round	Reported Installation Depth (m)	Measured Installation Depth (mbgl)	Response Zone	Date & Time of Monitoring (elapsed time)	Borehole Pressure (mb)		Gas Flow (l/hr)	Water Depth (mbgl)	Carbon Dioxide (% / vol)	Methane (% / vol)	Oxygen (% / vol)	LEL (%)	Carbon Monoxide (ppm)	Hydrogen Sulphide (ppm)
WS10	1	50	3			2.00 to 4.00	30 secs	-	-	0.0 _(SS)	-	-	-	-	-	-	-
WS10	1	50	3 (2)	4.00		2.00 to 4.00	13/10/2017 10:37:00	-	-	-	-	0.1	0.0	20.9	-	0	0
WS10	1	50	3 (2)			2.00 to 4.00	60 secs	-	-		-	0.9	0.0	20.3	-	0	0
WS10	1	50	3 (2)			2.00 to 4.00	75 secs	-	-	-	-	1.0	0.0	19.1	-	0	0
WS10	1	50	3 (2)			2.00 to 4.00	90 secs	-	-	-	-	1.4	0.0	18.4	-	0	0
WS10	1	50	3 (2)			2.00 to 4.00	120 secs	-	-	-	-	1.9	0.0	17.5	-	0	0
WS10	1	50	3 (2)			2.00 to 4.00	150 secs	-	-	-	-	2.2	0.0	16.8	-	0	0
WS10	1	50	3 (2)			2.00 to 4.00	240 secs	-	-	-	-	2.5	0.0	16.2	-	0	0
WS10	1	50	3 (2)			2.00 to 4.00	300 secs	-	-	-	-	2.5	0.0	16.0	-	0	0
WS10	1	50	3 (2)			2.00 to 4.00	360 secs	-	-	-	-	2.6	0.0	16.0	-	0	0
WS10	1	50	3 (2)			2.00 to 4.00	390 secs	-	-	-	-	2.6	0.0	16.0	-	0	0
WS10	1	50	3 (2)			2.00 to 4.00	420 secs	-	-	-	-	2.6	0.0	16.0	-	0	0
WS10	1	50	3 (2)			2.00 to 4.00	435 secs	-	-	-	-	2.6	0.0	16.0	-	0	0
WS10	1	50	3 (2)			2.00 to 4.00	450 secs	-	-	-	-	2.6	0.0	16.0	-	0	0
WS10	1	50	3 (2)			2.00 to 4.00	480 secs	-	-	-	-	2.6	0.0	16.0	-	0	0
WS10	1	50	3 (2)			2.00 to 4.00	510 secs	-	-	-	-	2.6	0.0	16.0	-	0	0
WS10	1	50	3 (2)			2.00 to 4.00	540 secs	-	-	-	-	2.6	0.0	16.1	-	0	0
WS10	1	50	3 (2)			2.00 to 4.00	600 secs	-	-	-	-	2.6	0.0	16.2	-	0	0

Key: I = Initial, P = Peak, SS = Steady State. Note: LEL = Lower Explosive Limit = 5% v/v.

RSK Environment Ltd Abbey Park Humber Road Coventry CV3 4AQ

Comp
Mostro
Contract:

Mostrowije	Compiled By
	Mostrowije

Date 26/10/17

Checked By

Contract Ref: Date

313583

Page:

41 of **48**

Roade Bypass

[Pressures] Previous During End Equipment Used & Remarks Start

Exploratory Position ID	Pipe ref	Pipe diameter (mm)	Monitoring Round	Reported Installation Depth (m)	Measured Installation Depth (mbgl)	Response Zone	Date & Time of Monitoring (elapsed time)	Borehole Pressure (mb)		Gas Flow (l/hr)	Water Depth (mbgl)	Carbon Dioxide (% / vol)	Methane (% / vol)	Oxygen (% / vol)	LEL (%)	Carbon Monoxide (ppm)	Hydrogen Sulphide (ppm)
WS10	1	50	3 (2)			2.00 to 4.00	660 secs	-	-	-	-	2.5	0.0	16.3	-	0	0
WS10	1	50	3 (2)			2.00 to 4.00	720 secs	-	-	-	-	2.5	0.0	16.4	-	0	0
WS10	1	50	3 (3)	4.00	4.04	2.00 to 4.00	13/10/2017 10:53:00	-	-	-	3.15	-	-	-	-	-	-
WS10	1	50	4	4.00		2.00 to 4.00	18/10/2017 10:44:00	1002	1002	0.3 _(I)	-	-	-	-	-	-	-
WS10	1	50	4			2.00 to 4.00	30 secs	-	-	0.2 _(SS)	-	-	-	-	-	-	-
WS10	1	50	4 (2)	4.00		2.00 to 4.00	18/10/2017 10:44:45	-	-	-	-	0.1	0.0	20.9	-	0	-
WS10	1	50	4 (2)			2.00 to 4.00	15 secs	-	-	-	-	2.5	0.0	20.3	-	0	0
WS10	1	50	4 (2)			2.00 to 4.00	45 secs	-	-	-	-	2.5	0.0	18.0	-	0	0
WS10	1	50	4 (2)			2.00 to 4.00	75 secs	-	-	-	-	2.5	0.0	17.7	-	0	0
WS10	1	50	4 (2)			2.00 to 4.00	105 secs	-	-	-	-	2.6	0.0	17.7	-	0	0
WS10	1	50	4 (2)			2.00 to 4.00	135 secs	-	-	-	-	2.6	0.0	17.7	-	0	0
WS10	1	50	4 (2)			2.00 to 4.00	195 secs	-	-	-	-	2.6	0.0	17.7	-	0	0
WS10	1	50	4 (2)			2.00 to 4.00	255 secs	-	-	-	-	2.6	0.0	17.7	-	0	0
WS10	1	50	4 (2)			2.00 to 4.00	315 secs	-	-	-	-	2.6	0.0	17.8	-	0	0
WS10	1	50	4 (3)	4.00	4.04	2.00 to 4.00	18/10/2017 10:55:00	-	-	-	2.75	-	-	-	-	-	-
WS11	1	50	1	5.00		3.00 to 5.00	28/09/2017	1003	1003	0.0 _(I)	-	-	-	-	-	-	-
WS11	1	50	1			3.00 to 5.00	30 secs	-	_	0.0 _(SS)	-	-	-	-	-	-	-

Key: I = Initial, P = Peak, SS = Steady State. Note: LEL = Lower Explosive Limit = 5% v/v.

RSK Environment Ltd Abbey Park Humber Road Coventry CV3 4AQ

Compiled By
Mostrouse
Contract:

Date 26/10/17 Checked By

Date

Contract Ref:

313583

Roade Bypass

Page:

[Pressures] Previous During End Equipment Used & Remarks Start

Exploratory Position ID	Pipe ref	Pipe diameter (mm)	Monitoring Round	Reported Installation Depth (m)	Measured Installation Depth (mbgl)	Response Zone	Date & Time of Monitoring (elapsed time)	Borehole Pressure (mb)		Gas Flow (l/hr)	Water Depth (mbgl)	Carbon Dioxide (% / vol)	Methane (% / vol)	Oxygen (% / vol)	LEL (%)	Carbon Monoxide (ppm)	Hydrogen Sulphide (ppm)
WS11	1	50	1 (2)	5.00		3.00 to 5.00	28/09/2017 00:01:00	-	-	-	-	0.0	0.0	20.9	0.0	0	0
WS11	1	50	1 (2)			3.00 to 5.00	15 secs	-	-	-	-	3.9	0.0	19.1	0.0	1	0
WS11	1	50	1 (2)			3.00 to 5.00	30 secs	-	-	-	-	4.0	0.0	14.6	0.0	1	0
WS11	1	50	1 (2)			3.00 to 5.00	60 secs	-	-	-	-	4.0	0.0	13.8	0.0	0	0
WS11	1	50	1 (2)			3.00 to 5.00	90 secs	-	-	-	-	4.0	0.0	13.7	0.0	0	0
WS11	1	50	1 (2)			3.00 to 5.00	120 secs	-	-	-	-	4.0	0.0	13.7	0.0	0	0
WS11	1	50	1 (2)			3.00 to 5.00	180 secs	-	-	-	-	4.0	0.0	13.6	0.0	0	0
WS11	1	50	1 (2)			3.00 to 5.00	240 secs	-	-	-	-	4.0	0.0	13.6	0.0	0	0
WS11	1	50	1 (2)			3.00 to 5.00	300 secs	-	-	-	-	4.0	0.0	13.6	0.0	0	0
WS11	1	50	1 (3)	5.00	4.48	3.00 to 5.00	28/09/2017 00:07:00	-	-	-	DRY	-	-	-	-	-	-
WS11	1	50	2	5.00		3.00 to 5.00	05/10/2017 08:40:00	1003	1003	0.0 _(I)	-	-	-	-	-	-	-
WS11	1	50	2			3.00 to 5.00	30 secs	-	-	0.0 _(SS)	-	-	-	-	-	-	-
WS11	1	50	2 (2)	5.00		3.00 to 5.00	05/10/2017 08:41:00	-	-	-	-	0.0	0.0	20.9	0.0	0	0
WS11	1	50	2 (2)			3.00 to 5.00	15 secs	-	-	-	-	1.5	0.0	20.2	0.0	0	0
WS11	1	50	2 (2)			3.00 to 5.00	30 secs	-	-	-	-	1.5	0.0	19.7	0.0	0	0
WS11	1	50	2 (2)			3.00 to 5.00	60 secs	-	-	-	-	1.5	0.0	19.6	0.0	0	0
WS11	1	50	2 (2)			3.00 to 5.00	90 secs	-	-	-	-	1.5	0.0	19.6	0.0	0	0
WS11	1	50	2 (2)			3.00 to 5.00	120 secs	-	-	-	-	1.4	0.0	19.6	0.0	0	0

Key: I = Initial, P = Peak, SS = Steady State. Note: LEL = Lower Explosive Limit = 5% v/v.

RSK Environment Abbey Park Humber Road Coventry CV3 4AQ

Ltd	
Lta	
	Co

	Compiled By
n	Dstrewije
Contract:	

Date 26/10/17

Roade Bypass

Checked By

Date

313583

Page:

Contract Ref:

[Pressures] Previous During Start End Equipment Used & Remarks

Exploratory Position ID	Pipe ref	Pipe diameter (mm)	Monitoring Round	Reported Installation Depth (m)	Measured Installation Depth (mbgl)	Response Zone	Date & Time of Monitoring (elapsed time)	Borehole Pressure (mb)		Gas Flow (l/hr)	Water Depth (mbgl)	Carbon Dioxide (% / vol)	Methane (% / vol)	Oxygen (% / vol)	LEL (%)	Carbon Monoxide (ppm)	Hydrogen Sulphide (ppm)
WS11	1	50	2 (2)			3.00 to 5.00	180 secs	-	-	-	-	1.4	0.0	19.7	0.0	0	0
WS11	1	50	2 (2)			3.00 to 5.00	240 secs	-	-	=	-	1.3	0.0	19.8	0.0	0	0
WS11	1	50	2 (2)			3.00 to 5.00	300 secs	-	-	-	-	1.2	0.0	19.9	0.0	0	0
WS11	1	50	2 (3)	5.00	4.52	3.00 to 5.00	05/10/2017 08:47:00	-	-	-	DRY	-	-	-	-	-	-
WS11	1	50	3	5.00		3.00 to 5.00	13/10/2017 10:00:00	1007	1007	0.0 _(I)	-	-	-	-	-	-	-
WS11	1	50	3			3.00 to 5.00	30 secs	-	-	0.0 _(SS)	-	-	-	-	-	-	-
WS11	1	50	3 (2)	5.00		3.00 to 5.00	13/10/2017 10:01:00	-	-	-	-	0.0	0.0	20.9	0.0	0	0
WS11	1	50	3 (2)			3.00 to 5.00	15 secs	-	-	-	-	0.1	0.0	21.2	0.0	1	0
WS11	1	50	3 (2)			3.00 to 5.00	30 secs	-	-	-	-	0.1	0.0	21.2	0.0	0	0
WS11	1	50	3 (2)			3.00 to 5.00	60 secs	-	-	-	-	0.1	0.0	21.2	0.0	0	0
WS11	1	50	3 (2)			3.00 to 5.00	90 secs	-	-	-	-	0.1	0.0	21.3	0.0	0	0
WS11	1	50	3 (2)			3.00 to 5.00	120 secs	-	-	-	-	0.1	0.0	21.3	0.0	0	0
WS11	1	50	3 (2)			3.00 to 5.00	180 secs	-	-	-	-	0.1	0.0	21.3	0.0	0	0
WS11	1	50	3 (2)			3.00 to 5.00	240 secs	-	-	-	-	0.1	0.0	21.3	0.0	0	0
WS11	1	50	3 (2)			3.00 to 5.00	300 secs	-	-	-	-	0.1	0.0	21.3	0.0	0	0
WS11	1	50	3 (3)	5.00	4.53	3.00 to 5.00	13/10/2017 10:07:00	-	-	-	DRY	-	-	-	-	-	-
WS11	1	50	4	5.00		3.00 to 5.00	19/10/2017 09:49:00	993	993	0.3 _(I)	-	-	-	-	-	-	-
WS11	1	50	4			3.00 to 5.00	30 secs	-	-	0.2 _(SS)	-	-	-	-	-	-	-

Key: I = Initial, P = Peak, SS = Steady State. Note: LEL = Lower Explosive Limit = 5% v/v.

RSK Environment Ltd Abbey Park Humber Road Coventry CV3 4AQ

Compiled E
Mostrewg
Contract:

Compiled By	
Mostrowser	

Date 26/10/17 Checked By

Date

Contract Ref:

313583

Roade Bypass

Page:

[Pressures] Previous During End Equipment Used & Remarks Start

Exploratory Position ID	Pipe ref	Pipe diameter (mm)	Monitoring Round	Reported Installation Depth (m)	Measured Installation Depth (mbgl)	Response Zone	Date & Time of Monitoring (elapsed time)	Borehole Pressure (mb)		Gas Flow (l/hr)	Water Depth (mbgl)	Carbon Dioxide (% / vol)	Methane (% / vol)	Oxygen (% / vol)	LEL (%)	Carbon Monoxide (ppm)	Hydrogen Sulphide (ppm)
WS11	1	50	4 (2)	5.00		3.00 to 5.00	19/10/2017 09:50:00	-	-	-	-	0.1	0.0	20.9	-	0	0
WS11	1	50	4 (2)			3.00 to 5.00	30 secs	-	-	-	-	1.8	0.0	20.6	-	0	0
WS11	1	50	4 (2)			3.00 to 5.00	60 secs	-	-	-	-	1.7	0.0	19.5	-	0	0
WS11	1	50	4 (2)			3.00 to 5.00	90 secs	-	-	-	-	1.7	0.0	19.2	-	0	0
WS11	1	50	4 (2)			3.00 to 5.00	120 secs	-	-	-	-	1.7	0.0	19.2	-	0	0
WS11	1	50	4 (2)			3.00 to 5.00	150 secs	-	-	-	-	1.7	0.0	19.2	-	0	0
WS11	1	50	4 (2)			3.00 to 5.00	180 secs	-	-	-	-	1.7	0.0	19.2	-	0	0
WS11	1	50	4 (2)			3.00 to 5.00	240 secs	-	-	-	-	1.7	0.0	19.1	-	0	0
WS11	1	50	4 (2)			3.00 to 5.00	300 secs	-	-	-	-	1.7	0.0	19.1	-	0	0
WS11	1	50	4 (3)	5.00	4.53	3.00 to 5.00	19/10/2017 09:56:00	-	-	-	4.53	-	ı	-	-	-	-
WS12	1	50	1	5.00		3.00 to 5.00	28/09/2017 08:53:00	1001	1001	0.0 _(I)	ı	-	ı	-	-	-	-
WS12	1	50	1			3.00 to 5.00	30 secs	-	-	0.0 _(SS)	-	-	-	-	-	-	-
WS12	1	50	1 (2)	5.00		3.00 to 5.00	28/09/2017 08:54:00	-	-	-	-	0.0	0.0	20.9	0.0	0	0
WS12	1	50	1 (2)			3.00 to 5.00	15 secs	-	-	-	_	4.1	0.0	17.2	0.0	1	0
WS12	1	50	1 (2)			3.00 to 5.00	30 secs	-	-	-	-	3.7	0.0	16.0	0.0	1	0
WS12	1	50	1 (2)			3.00 to 5.00	60 secs	-	-	-	-	3.8	0.0	15.7	0.0	1	0
WS12	1	50	1 (2)			3.00 to 5.00	90 secs	-	-	-	-	3.8	0.0	15.6	0.0	1	0

Key: I = Initial, P = Peak, SS = Steady State. Note: LEL = Lower Explosive Limit = 5% v/v.

RSK Environment Abbey Park Humber Road Coventry CV3 4AQ

ŀ	Ltd	
	Ltu	
		(

	Compiled By
M	Dstrewijes
Contract:	

Date 26/10/17

Roade Bypass

Checked By

Date

Contract Ref:

313583

Page:

[Pressures] Previous During Start End Equipment Used & Remarks

Exploratory Position ID	Pipe ref	Pipe diameter (mm)	Monitoring Round	Reported Installation Depth (m)	Measured Installation Depth (mbgl)	Response Zone	Date & Time of Monitoring (elapsed time)	Borehole Pressure (mb)		Gas Flow (I/hr)	Water Depth (mbgl)	Carbon Dioxide (% / vol)	Methane (% / vol)	Oxygen (% / vol)	LEL (%)	Carbon Monoxide (ppm)	Hydrogen Sulphide (ppm)
WS12	1	50	1 (2)			3.00 to 5.00	120 secs	-	-	-	-	3.8	0.0	15.6	0.0	1	0
WS12	1	50	1 (2)			3.00 to 5.00	180 secs	-	-	-	-	3.9	0.0	15.5	0.0	1	0
WS12	1	50	1 (2)			3.00 to 5.00	240 secs	-	-	-	-	3.9	0.0	15.5	0.0	1	0
WS12	1	50	1 (2)			3.00 to 5.00	300 secs	-	-	-	-	3.9	0.0	15.4	0.0	1	0
WS12	1	50	1 (3)	5.00	5.06	3.00 to 5.00	28/09/2017 09:00:00	-	-	-	3.58	-	-	-	-	-	-
WS12	1	50	2	5.00		3.00 to 5.00	05/10/2017 08:52:00	999	999	0.0 _(I)	-	-	-	-	-	-	-
WS12	1	50	2			3.00 to 5.00	30 secs	-	-	0.0 _(SS)	-	-	-	-	-	-	-
WS12	1	50	2 (2)	5.00		3.00 to 5.00	05/10/2017 08:53:00	-	-	-	-	0.0	0.0	20.9	0.0	0	0
WS12	1	50	2 (2)			3.00 to 5.00	15 secs	-	-	-	-	7.9	0.0	13.9	0.0	1	0
WS12	1	50	2 (2)			3.00 to 5.00	30 secs	-	-	-	-	7.5	0.0	12.4	0.0	1	0
WS12	1	50	2 (2)			3.00 to 5.00	60 secs	-	-	-	-	7.6	0.0	12.0	0.0	1	0
WS12	1	50	2 (2)			3.00 to 5.00	90 secs	-	-	-	-	7.7	0.0	11.9	0.0	1	0
WS12	1	50	2 (2)			3.00 to 5.00	120 secs	-	-	-	-	7.7	0.0	11.9	0.0	1	0
WS12	1	50	2 (2)			3.00 to 5.00	180 secs	-	-	-	-	7.7	0.0	11.8	0.0	1	0
WS12	1	50	2 (2)			3.00 to 5.00	240 secs	-	-	-	-	7.7	0.0	11.8	0.0	1	0
WS12	1	50	2 (2)			3.00 to 5.00	300 secs	-	-	-	-	7.7	0.0	11.8	0.0	1	0
WS12	1	50	2 (3)	5.00	5.07	3.00 to 5.00	05/10/2017 08:59:00	-	-	-	4.80	-	-	-	-	-	-
WS12	1	50	3	5.00		3.00 to 5.00	13/10/2017 09:43:00	1008	1008	0.1 _(I)	-	-	-	-	-	-	-

Key: I = Initial, P = Peak, SS = Steady State. Note: LEL = Lower Explosive Limit = 5% v/v.

RSK

RSK Environment Ltd Abbey Park Humber Road Coventry CV3 4AQ

td	
	Contrac
	Contido

Compiled By
MDStrewges

Date 26/10/17

Roade Bypass

Checked By

Date

Contract Ref: 313583

Page:

[Pressures] Previous During End Equipment Used & Remarks Start

Exploratory Position ID	Pipe ref	Pipe diameter (mm)	Monitoring Round	Reported Installation Depth (m)	Measured Installation Depth (mbgl)	Response Zone	Date & Time of Monitoring (elapsed time)	Borehole Pressure (mb)		Gas Flow (l/hr)	Water Depth (mbgl)	Carbon Dioxide (% / vol)	Methane (% / vol)	Oxygen (% / vol)	LEL (%)	Carbon Monoxide (ppm)	Hydrogen Sulphide (ppm)
WS12	1	50	3			3.00 to 5.00	30 secs	-	-	0.1 _(SS)	-	-	-	-	-	-	-
WS12	1	50	3 (2)	5.00		3.00 to 5.00	13/10/2017 09:44:00	-	-	-	-	0.1	0.0	20.8	-	0	0
WS12	1	50	3 (2)			3.00 to 5.00	60 secs	-	-	-	-	9.1	0.0	17.0	-	0	0
WS12	1	50	3 (2)			3.00 to 5.00	90 secs	-	-	-	-	8.5	0.0	12.3	-	0	0
WS12	1	50	3 (2)			3.00 to 5.00	120 secs	-	-	-	-	8.7	0.0	11.4	-	0	0
WS12	1	50	3 (2)			3.00 to 5.00	150 secs	-	-	-	-	8.8	0.0	11.3	-	0	0
WS12	1	50	3 (2)			3.00 to 5.00	180 secs	-	-	-	-	8.8	0.0	11.2	-	0	0
WS12	1	50	3 (2)			3.00 to 5.00	240 secs	-	-	-	-	8.8	0.0	11.2	-	0	0
WS12	1	50	3 (2)			3.00 to 5.00	300 secs	-	-	-	-	8.8	0.0	11.2	-	0	0
WS12	1	50	3 (2)			3.00 to 5.00	360 secs	-	-	-	-	8.8	0.0	11.2	-	0	0
WS12	1	50	3 (2)			3.00 to 5.00	420 secs	-	-	-	-	8.8	0.0	11.2	-	0	0
WS12	1	50	3 (3)	5.00	5.08	3.00 to 5.00	13/10/2017 09:51:30	-	-	-	4.64	-	-	-	-	-	-
WS12	1	50	4	5.00		3.00 to 5.00	19/10/2017 10:13:00	994	994	0.1 _(I)	-	-	-	-	-	-	-
WS12	1	50	4			3.00 to 5.00	15 secs	-	-	0.0 _(SS)	-	-	-	-	-	-	-
WS12	1	50	4 (2)	5.00		3.00 to 5.00	19/10/2017 10:13:30	-	-	-	-	0.1	0.0	20.8	-	0	0
WS12	1	50	4 (2)			3.00 to 5.00	30 secs	-	-	-	-	8.7	0.0	18.1	-	1	0
WS12	1	50	4 (2)			3.00 to 5.00	60 secs	-	-	-	-	8.1	0.0	12.6	-	1	0
WS12	1	50	4 (2)			3.00 to 5.00	90 secs	-	-	-	-	8.4	0.0	11.4	-	1	0

Key: I = Initial, P = Peak, SS = Steady State. Note: LEL = Lower Explosive Limit = 5% v/v.

RSK Environment Lt Abbey Park Humber Road Coventry CV3 4AQ

td	
ıu	М
	Combracti
	Contract:

DStrewill

Compiled By

Date 26/10/17

Checked By

Date

313583

Contract Ref:

Page:

[Pressures] Previous During End Equipment Used & Remarks Start

Exploratory Position ID	Pipe ref	Pipe diameter (mm)	Monitoring Round	Reported Installation Depth (m)	Measured Installation Depth (mbgl)	Response Zone	Date & Time of Monitoring (elapsed time)	Borehole Pressure (mb)		Gas Flow (l/hr)	Water Depth (mbgl)	Carbon Dioxide (% / vol)	Methane (% / vol)	Oxygen (% / vol)	LEL (%)	Carbon Monoxide (ppm)	Hydrogen Sulphide (ppm)
WS12	1	50	4 (2)			3.00 to 5.00	120 secs	-	-	-	-	8.4	0.0	11.3	-	1	0
WS12	1	50	4 (2)			3.00 to 5.00	150 secs	-	-	-	-	8.4	0.0	11.3	-	0	0
WS12	1	50	4 (2)			3.00 to 5.00	210 secs	-	-	-	-	8.4	0.0	11.2	-	0	0
WS12	1	50	4 (2)			3.00 to 5.00	270 secs	-	-	-	-	8.4	0.0	11.2	-	0	0
WS12	1	50	4 (2)			3.00 to 5.00	330 secs	-	-	-	-	8.4	0.0	11.2	-	0	0
WS12	1	50	4 (3)	5.00	5.08	3.00 to 5.00	19/10/2017 10:20:00	-	-	-	4.57	-	-	-	-	-	-

Key: I = Initial, P = Peak, SS = Steady State. Note: LEL = Lower Explosive Limit = 5% v/v.

RSK Environment Abbey Park Humber Road Coventry CV3 4AQ

Ltd	
Liu	
	С

Compiled By Mostrowie Contract:

Date 26/10/17 Checked By

Date

Contract Ref:

313583

Roade Bypass

48

Page:

APPENDIX G GROUNDWATER MONITORING RECORDS

 Weather
 Ground Conditions
 Wind Conditions
 Air Temperature (°C)
 Equipment Used & Remarks

 Round 2
 Cloudy
 Damp
 Medium
 12
 GA5000 + Dipmeter

Exploratory Position ID	Pipe Ref	Pipe Diameter	Monitoring Round / Test Number	Reported Installation Depth (m)	Measured Installation Depth (mbgl)	Response Zone	Date & Time of Monitoring	Water Depth (mbgl)	рН	Redox (mV)	Conduc- tivity (uS/cm)	Temp- erature (°C)	Dissolved Oxygen (mg/l)	Remarks
BH01	1	50	2/1	20.00	19.50	10.00 to 20.00	05/10/2017 10:01	17.17	9.00	318	4379	11.2	4.2	General Remarks: Samples taken.
BH02	1	50	2/1	30.00	29.02	20.00 to 30.00	05/10/2017 09:20	20.15	7.84	306	1650	11.2	3.7	General Remarks: Samples taken, cloudy grey and no odour.
BH04	1	50	2/1	11.00	10.87	7.00 to 11.00	06/10/2017	9.92						General Remarks: Samples taken but well ran dry before readings
														could be taken.
BH05	1	50	2/1	12.00	9.78	8.00 to 12.00	05/10/2017 13:40	6.92	7.84	274	2338	12.0	4.1	General Remarks: Samples taken, very cloudy grey and no odour.
WS02	1	50	2/1	5.00	5.00	3.00 to 5.00	05/10/2017 10:50	2.77						General Remarks: Samples taken, started off clear but became
														cloudier and no odour. Unable to take readings due to slow recharge.
WS10	1	50	2/1	4.00	4.04	2.00 to 4.00	05/10/2017 15:30	3.22						General Remarks: Samples taken, clear and no odour. Unable to take
														readings due to well running dry.

Key: NDA denotes 'no data available'.

RSK

RSK Environment Ltd Abbey Park Humber Road Coventry CV3 4AQ

Compiled By	Date	Checked By
	02/11/17	
Contract:		•
	Road	le Bypass

Contract Ref:

313583

Page:

Date

APPENDIX H LABORATORY CERTIFICATES FOR SOIL ANALYSIS

FINAL ANALYTICAL TEST REPORT

Envirolab Job Number: 17/06450

Issue Number: 1 **Date:** 06 October, 2017

Client: RSK Environment Ltd Coventry

Humber Road, Abbey Park

GWaller

Coventry

UK

CV3 4AQ

Project Manager: Darren Bench Project Name: Roade Bypass

Project Ref: 313583
Order No: N/A
Date Samples Received: 07/09/1

Date Samples Received: 07/09/17
Date Instructions Received: 22/09/17
Date Analysis Completed: 06/10/17

Prepared by: Approved by:

Danielle Brierley Gill Walker

Client Manager Laboratory Manager

					00	ject ivei. 3 i				
Lab Sample ID	17/06450/1	17/06450/2	17/06450/3	17/06450/4	17/06450/5	17/06450/6	17/06450/7	17/06450/8		
Client Sample No										
Client Sample ID	TP01	TP02	TP03	TP04	TP05	TP12	TP14	TP15		
Depth to Top	0.20	0.20	0.30	0.50	0.20	0.20	0.20	0.20		
Depth To Bottom										
Date Sampled	11-Sep-17	11-Sep-17	11-Sep-17	11-Sep-17	11-Sep-17	08-Sep-17	07-Sep-17	07-Sep-17		4
Sample Type	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil		Method ref
Sample Matrix Code	6AE	6AE	6AE	6AE	6	5AE	5AE	5AE	Units	Meth
% Stones >10mm _A	<0.1	<0.1	<0.1	2.7	<0.1	1.9	1.9	3.4	% w/w	A-T-044
pH _D ^{M#}	7.66	7.15	8.10	8.20	6.86	7.90	7.67	7.40	pН	A-T-031s
Phenols - Total by HPLC _A	<0.2	<0.2	<0.2	0.4	<0.2	<0.2	<0.2	<0.2	mg/kg	A-T-050s
Total Organic Carbon _D ^{M#}	3.73	1.61	2.64	1.69	2.69	0.99	1.33	2.07	% w/w	A-T-032s
Arsenic _D ^{M#}	4	10	2	<1	4	11	7	8	mg/kg	A-T-024s
Cadmium _D ^{M#}	0.9	1.1	1.0	1.0	0.7	1.1	1.0	1.3	mg/kg	A-T-024s
Copper _D ^{M#}	33	16	24	15	12	15	14	15	mg/kg	A-T-024s
Chromium _D ^{M#}	36	26	39	37	34	26	26	35	mg/kg	A-T-024s
Chromium (hexavalent) _D	<1	<1	<1	<1	<1	<1	<1	<1	mg/kg	A-T-040s
Lead _D ^{M#}	30	24	20	16	21	96	21	22	mg/kg	A-T-024s
Mercury _D	<0.17	<0.17	0.30	<0.17	<0.17	<0.17	<0.17	<0.17	mg/kg	A-T-024s
Nickel _D ^{M#}	26	24	31	30	21	27	26	29	mg/kg	A-T-024s
Selenium _D ^{M#}	1	1	1	<1	<1	<1	<1	<1	mg/kg	A-T-024s
Zinc _D ^{M#}	82	68	69	53	63	73	71	87	mg/kg	A-T-024s

Lab Sample ID	17/06450/1	17/06450/2	17/06450/3	17/06450/4	17/06450/5	17/06450/6	17/06450/7	17/06450/8		
Client Sample No										
Client Sample ID	TP01	TP02	TP03	TP04	TP05	TP12	TP14	TP15		
Depth to Top	0.20	0.20	0.30	0.50	0.20	0.20	0.20	0.20		
Depth To Bottom										
Date Sampled	11-Sep-17	11-Sep-17	11-Sep-17	11-Sep-17	11-Sep-17	08-Sep-17	07-Sep-17	07-Sep-17		<u>پ</u>
Sample Type	Soil		Method ref							
Sample Matrix Code	6AE	6AE	6AE	6AE	6	5AE	5AE	5AE	Units	Meth
Asbestos in Soil (inc. matrix)										
Asbestos in soil _A #	NAD		A-T-045							
Asbestos ACM - Suitable for Water Absorption Test?	N/A									

				·	jeot itel. o i				
17/06450/1	17/06450/2	17/06450/3	17/06450/4	17/06450/5	17/06450/6	17/06450/7	17/06450/8		
TP01	TP02	TP03	TP04	TP05	TP12	TP14	TP15		
0.20	0.20	0.30	0.50	0.20	0.20	0.20	0.20		
11-Sep-17	11-Sep-17	11-Sep-17	11-Sep-17	11-Sep-17	08-Sep-17	07-Sep-17	07-Sep-17		f
Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil		Method ref
6AE	6AE	6AE	6AE	6	5AE	5AE	5AE	Units	Meth
-	<50	-	-	-	<50	-	-	μg/kg	Subcon
-	<50	-	-	-	<50	-	-	μg/kg	Subcon
-	<50	-	-	-	<50	-	-	μg/kg	Subcon
-	<50	-	-	-	<50	-	-	μg/kg	Subcon
-	<50	-	-	-	<50	-	-	μg/kg	Subcon
-	<50	-	-	-	<50	-	-	μg/kg	Subcon
-	<50	-	-	-	<50	-	-	μg/kg	Subcon
-	<50	-	-	-	<50	-	-	μg/kg	Subcon
-	<50	-	-	-	<50	-	-	μg/kg	Subcon
-	<50	-	-	-	<50	-	-	μg/kg	Subcon
	TP01 0.20 11-Sep-17 Soil 6AE	TP01 TP02 0.20 0.20 11-Sep-17 11-Sep-17 Soil Soil 6AE 6AE - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50	TP01 TP02 TP03 0.20 0.20 0.30 111-Sep-17 11-Sep-17 11-Sep-17 Soil Soil Soil Soil 6AE 6AE 6AE - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <5	TP01 TP02 TP03 TP04 0.20 0.20 0.30 0.50 11-Sep-17 11-Sep-17 11-Sep-17 11-Sep-17 Soil Soil Soil Soil Soil 6AE 6AE 6AE 6AE - <50 < - <50 < - <50 < - <50 < - <50 < - <50 < - <50 < - <50 < - <50 < - <50 < - <50 < - <50 < - <50 < - <50 < - <50 < - <50 < - <50 < - <50 < - <50 < - <50 < - <50 < - <50 < - <50 < - <50 < - <50 < - <50 < - <50 < - <50 < - <50 < - <50 < - <50 < - <50 < - <50 < - <50 < - <50 < - <50 < - <50 < - <50 < - <50 < - <50 < - <50 < - <50 < - <50 < - <50 < - <50 < - <50 < - <50 < - <50 < - <50 < - <50 < - <50 < - <50 < - <50 < - <50 < - <50 < - <50 < - <50 < - <50 < - <50 < - <50 < - <50 < - <50 < - <50 < - <50 < - <50 < - <50 < - <50 < - <50 < - <50 < - <50 < - <50 < - <50 < - <50 < - <50 < - <50 < - <50 < - <50 < - <50 < - <50 < - <50 < - <50 < - <50 < - <50 < - <50 < - <50 < - <50 < - <50 <	TP01 TP02 TP03 TP04 TP05 0.20 0.20 0.30 0.50 0.20 11-Sep-17 11-Sep-17 11-Sep-17 11-Sep-17 Soil Soil Soil Soil Soil Soil 6AE 6AE 6AE 6AE 6AE 6 - <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50	TP01 TP02 TP03 TP04 TP05 TP12 0.20 0.20 0.30 0.50 0.20 0.20 11-Sep-17 11-Sep-17 11-Sep-17 11-Sep-17 08-Sep-17 Soil Soil Soil Soil Soil Soil Soil 6AE 6AE 6AE 6AE 6AE 6 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 -	TP01 TP02 TP03 TP04 TP05 TP12 TP14 0.20 0.20 0.30 0.50 0.20 0.20 0.20 11-Sep-17 11-Sep-17 11-Sep-17 11-Sep-17 08-Sep-17 07-Sep-17 Soil Soil Soil Soil Soil Soil Soil Soil	TP01 TP02 TP03 TP04 TP05 TP12 TP14 TP15 0.20 0.20 0.30 0.50 0.20 0.20 0.20 0.20 11-Sep-17 11-Sep-17 11-Sep-17 11-Sep-17 08-Sep-17 07-Sep-17 07-Sep-17 Soil Soil Soil Soil Soil Soil Soil Soil	TP01 TP02 TP03 TP04 TP05 TP12 TP14 TP15 0.20 0.20 0.30 0.50 0.20 0.20 0.20 0.20 11-Sep-17 11-Sep-17 11-Sep-17 11-Sep-17 11-Sep-17 08-Sep-17 07-Sep-17 07-Sep-17 Soil Soil Soil Soil Soil Soil Soil Soil 6AE 6AE 6AE 6AE 5AE 5AE </td

						ect Kei. 31				
Lab Sample ID	17/06450/1	17/06450/2	17/06450/3	17/06450/4	17/06450/5	17/06450/6	17/06450/7	17/06450/8		
Client Sample No										
Client Sample ID	TP01	TP02	TP03	TP04	TP05	TP12	TP14	TP15		
Depth to Top	0.20	0.20	0.30	0.50	0.20	0.20	0.20	0.20		
Depth To Bottom										
Date Sampled	11-Sep-17	11-Sep-17	11-Sep-17	11-Sep-17	11-Sep-17	08-Sep-17	07-Sep-17	07-Sep-17		¥.
Sample Type	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil		Method ref
Sample Matrix Code	6AE	6AE	6AE	6AE	6	5AE	5AE	5AE	Units	Meth
Pest-c										
Mevinphos _A	-	<50	-	-	-	<50	-	-	μg/kg	Subcon
Dichlorvos _A	-	<50	-	-	-	<50	-	-	μg/kg	Subcon
alpha-Hexachlorocyclohexane (HCH) _A	-	<50	-	-	-	<50	-	-	μg/kg	Subcon
Diazinon _A	-	<50	-	-	-	<50	-	-	μg/kg	Subcon
gamma-Hexachlorocyclohexane (HCH / Lindane) _A	-	<50	-	-	-	<50	-	-	μg/kg	Subcon
Heptachlor _A	-	<50	-	-	-	<50	-	-	μg/kg	Subcon
Aldrin _A	-	<50	-	-	-	<50	-	-	μg/kg	Subcon
beta-Hexachlorocyclohexane (HCH) _A	-	<50	-	-	-	<50	-	-	μg/kg	Subcon
Methyl Parathion _A	-	<50	-	-	-	<50	-	-	μg/kg	Subcon
Malathion _A	-	<50	-	-	-	<50	-	-	μg/kg	Subcon
Fenitrothion _A	-	<50	-	-	-	<50	-	-	μg/kg	Subcon
Heptachlor Epoxide _A	-	<50	-	-	-	<50	-	-	μg/kg	Subcon
Parathion (Ethyl Parathion) _A	-	<50	-	-	-	<50	-	-	μg/kg	Subcon
p,p-DDE _A	-	<50	-	-	-	<50	-	-	μg/kg	Subcon
p,p-DDT _A	-	<50	-	-	-	<50	-	-	μg/kg	Subcon
p,p-Methoxychlor _A	-	<50	-	-	-	<50	-	-	μg/kg	Subcon
p,p-TDE (DDD) _A	-	<50	-	-	-	<50	-	-	μg/kg	Subcon
o,p-DDE _A	-	<50	-	-	-	<50	-	-	μg/kg	Subcon
o,p-DDT _A	-	<50	-	-	-	<50	-	-	μg/kg	Subcon
o,p-Methoxychlor _A	-	<50	-	-	-	<50	-	-	μg/kg	Subcon
o,p-TDE (DDD) _A	-	<50	-	-	-	<50	-	-	μg/kg	Subcon
Endosulphan I _A	-	<50	-	-	-	<50	-	-	μg/kg	Subcon
Endosulphan II _A	-	<50	-	-	-	<50	-	-	μg/kg	Subcon
Endosulphan Sulphate _A	-	<50	-	-	-	<50	-	-	μg/kg	Subcon
Endrin _A	-	<50	-	-	-	<50	-	-	μg/kg	Subcon
Ethion _A	-	<50	-	-	-	<50	-	-	μg/kg	Subcon
Dieldrin _A	-	<50	-	-	-	<50	-	-	μg/kg	Subcon
Azinphos-methyl _A	•	<50	-	-	•	<50	-	•	μg/kg	Subcon

						ect Net. 31				
Lab Sample ID	17/06450/1	17/06450/2	17/06450/3	17/06450/4	17/06450/5	17/06450/6	17/06450/7	17/06450/8		
Client Sample No										
Client Sample ID	TP01	TP02	TP03	TP04	TP05	TP12	TP14	TP15		
Depth to Top	0.20	0.20	0.30	0.50	0.20	0.20	0.20	0.20		
Depth To Bottom										
Date Sampled	11-Sep-17	11-Sep-17	11-Sep-17	11-Sep-17	11-Sep-17	08-Sep-17	07-Sep-17	07-Sep-17		<u>.</u>
Sample Type	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil		Method ref
Sample Matrix Code	6AE	6AE	6AE	6AE	6	5AE	5AE	5AE	Units	Meth
PAH 16										
Acenaphthene _A ^{M#}	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	mg/kg	A-T-019s
Acenaphthylene _A ^{M#}	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	mg/kg	A-T-019s
Anthracene _A ^{M#}	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	mg/kg	A-T-019s
Benzo(a)anthracene _A ^{M#}	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	mg/kg	A-T-019s
Benzo(a)pyrene _A ^{M#}	0.06	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	mg/kg	A-T-019s
Benzo(b)fluoranthene _A ^{M#}	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	mg/kg	A-T-019s
Benzo(ghi)perylene _A ^{M#}	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	mg/kg	A-T-019s
Benzo(k)fluoranthene _A ^{M#}	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	mg/kg	A-T-019s
Chrysene _A ^{M#}	<0.06	<0.06	<0.06	<0.06	<0.06	<0.06	<0.06	<0.06	mg/kg	A-T-019s
Dibenzo(ah)anthracene _A ^{M#}	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	mg/kg	A-T-019s
Fluoranthene _A ^{M#}	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	mg/kg	A-T-019s
Fluorene _A ^{M#}	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	mg/kg	A-T-019s
Indeno(123-cd)pyrene _A ^{M#}	0.04	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	mg/kg	A-T-019s
Naphthalene _A ^{M#}	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	mg/kg	A-T-019s
Phenanthrene _A ^{M#}	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	mg/kg	A-T-019s
Pyrene _A ^{M#}	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	mg/kg	A-T-019s
PAH (total 16) _A ^{M#}	0.10	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	mg/kg	A-T-019s

	Client Project Ref: 313383									
Lab Sample ID	17/06450/1	17/06450/2	17/06450/3	17/06450/4	17/06450/5	17/06450/6	17/06450/7	17/06450/8		
Client Sample No										
Client Sample ID	TP01	TP02	TP03	TP04	TP05	TP12	TP14	TP15		
Depth to Top	0.20	0.20	0.30	0.50	0.20	0.20	0.20	0.20		
Depth To Bottom										
Date Sampled	11-Sep-17	11-Sep-17	11-Sep-17	11-Sep-17	11-Sep-17	08-Sep-17	07-Sep-17	07-Sep-17		_
Sample Type	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil		od re
Sample Matrix Code	6AE	6AE	6AE	6AE	6	5AE	5AE	5AE	Units	Method ref
TPH CWG										
Ali >C5-C6 _A #	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	mg/kg	A-T-022s
Ali >C6-C8 _A #	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	mg/kg	A-T-022s
Ali >C8-C10 _A #	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	mg/kg	A-T-022s
Ali >C10-C12 _A #	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	mg/kg	A-T-023s
Ali >C12-C16 _A #	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	mg/kg	A-T-023s
Ali >C16-C21 _A #	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	mg/kg	A-T-023s
Ali >C21-C35 _A #	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	mg/kg	A-T-023s
Total Aliphatics _A	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	mg/kg	A-T-023s
Aro >C5-C7 _A #	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	mg/kg	A-T-022s
Aro >C7-C8 _A #	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	mg/kg	A-T-022s
Aro >C8-C9 _A #	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	mg/kg	A-T-022s
Aro >C9-C10 _A #	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	mg/kg	A-T-022s
Aro >C10-C12 _A #	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	mg/kg	A-T-023s
Aro >C12-C16 _A #	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	mg/kg	A-T-023s
Aro >C16-C21 _A #	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	mg/kg	A-T-023s
Aro >C21-C35 _A #	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	mg/kg	A-T-023s
Total Aromatics _A	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	mg/kg	A-T-023s
TPH (Ali & Aro) _A	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	mg/kg	A-T-023s
BTEX - Benzene _A #	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	mg/kg	A-T-022s
BTEX - Toluene _A #	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	mg/kg	A-T-022s
BTEX - Ethyl Benzene _A #	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	mg/kg	A-T-022s
BTEX - m & p Xylene _A #	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	mg/kg	A-T-022s
BTEX - o Xylene _A #	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	mg/kg	A-T-022s
MTBE _A #	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	mg/kg	A-T-022s

		Client Flojett Ref. 313363									
Lab Sample ID	17/06450/9	17/06450/10	17/06450/11	17/06450/12	17/06450/13	17/06450/15	17/06450/16	17/06450/17			
Client Sample No											
Client Sample ID	TP15	TP16	TP16A	TP16A	TP17	WS02	WS04	WS05			
Depth to Top	1.50	0.10	0.20	0.50	0.20	0.20	0.30	0.20			
Depth To Bottom											
Date Sampled	07-Sep-17	07-Sep-17	08-Sep-17	08-Sep-17	07-Sep-17	06-Sep-17	30-Aug-17	30-Aug-17	Units	Method ref	
Sample Type	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil			
Sample Matrix Code	5A	4AE	4AE	5AE	5AE	5AE	5A	5AE			
% Stones >10mm _A	<0.1	2.7	25.7	<0.1	<0.1	<0.1	<0.1	4.8	% w/w	A-T-044	
pH _D ^{M#}	8.47	8.17	8.78	8.17	7.91	7.66	8.11	7.55	pН	A-T-031s	
Phenols - Total by HPLC _A	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	mg/kg	A-T-050s	
Total Organic Carbon _D ^{M#}	<0.03	1.43	<0.03	0.58	2.19	1.19	1.93	2.56	% w/w	A-T-032s	
Arsenic _D ^{M#}	<1	3	1	3	3	7	3	<1	mg/kg	A-T-024s	
Cadmium _D ^{M#}	<0.5	0.8	<0.5	0.7	0.7	1.3	0.8	0.8	mg/kg	A-T-024s	
Copper _D ^{M#}	5	12	2	10	13	13	14	20	mg/kg	A-T-024s	
Chromium _D ^{M#}	11	18	4	20	20	33	18	25	mg/kg	A-T-024s	
Chromium (hexavalent) _D	<1	<1	<1	<1	<1	<1	<1	<1	mg/kg	A-T-040s	
Lead _D ^{M#}	4	18	2	13	16	19	16	16	mg/kg	A-T-024s	
Mercury _D	<0.17	<0.17	0.31	<0.17	0.29	<0.17	0.20	<0.17	mg/kg	A-T-024s	
Nickel _D ^{M#}	11	17	3	17	16	33	16	21	mg/kg	A-T-024s	
Selenium _D ^{M#}	<1	<1	<1	<1	<1	1	<1	<1	mg/kg	A-T-024s	
Zinc _D ^{M#}	16	54	5	45	50	72	52	58	mg/kg	A-T-024s	

Lab Sample ID	17/06450/9	17/06450/10	17/06450/11	17/06450/12	17/06450/13	17/06450/15	17/06450/16	17/06450/17		
Client Sample No										
Client Sample ID	TP15	TP16	TP16A	TP16A	TP17	WS02	WS04	WS05		
Depth to Top	1.50	0.10	0.20	0.50	0.20	0.20	0.30	0.20		
Depth To Bottom										
Date Sampled	07-Sep-17	07-Sep-17	08-Sep-17	08-Sep-17	07-Sep-17	06-Sep-17	30-Aug-17	30-Aug-17		<u>.</u>
Sample Type	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil		Method ref
Sample Matrix Code	5A	4AE	4AE	5AE	5AE	5AE	5A	5AE	Units	Meth
Asbestos in Soil (inc. matrix)										
Asbestos in soil _A #	NAD	NAD	NAD	NAD	NAD	NAD	NAD	NAD		A-T-045
Asbestos ACM - Suitable for Water Absorption Test?	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A		

		1	1			1			ı	
Lab Sample ID	17/06450/9	17/06450/10	17/06450/11	17/06450/12	17/06450/13	17/06450/15	17/06450/16	17/06450/17		
Client Sample No										
Client Sample ID	TP15	TP16	TP16A	TP16A	TP17	WS02	WS04	WS05		
Depth to Top	1.50	0.10	0.20	0.50	0.20	0.20	0.30	0.20		
Depth To Bottom										
Date Sampled	07-Sep-17	07-Sep-17	08-Sep-17	08-Sep-17	07-Sep-17	06-Sep-17	30-Aug-17	30-Aug-17		y.
Sample Type	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil		Method ref
Sample Matrix Code	5A	4AE	4AE	5AE	5AE	5AE	5A	5AE	Units	Meth
Nitrogen Pesticides										
Ametryn _A	-	-	<50	-	<50	-	-	-	μg/kg	Subcon
Atraton _A	-	-	<50	-	<50	-	-	-	μg/kg	Subcon
Atrazine _A	-	-	<50	-	<50	-	-	-	μg/kg	Subcon
Prometon _A	•	-	<50	•	<50	-	•	•	μg/kg	Subcon
Prometryn _A	-	-	<50	-	<50	-	•	-	μg/kg	Subcon
Propazine _A	-	-	<50	-	<50	-	-	-	μg/kg	Subcon
Simazine _A	-	-	<50	-	<50	-	-	-	μg/kg	Subcon
Simetryn _A	-	-	<50	-	<50	-	-	-	μg/kg	Subcon
Terbuthylazine _A	-	-	<50	-	<50	-	-	-	μg/kg	Subcon
Terbutryn _A	-	-	<50	-	<50	-	-	-	μg/kg	Subcon

		1	r	1		ect Kei. 31		1		
Lab Sample ID	17/06450/9	17/06450/10	17/06450/11	17/06450/12	17/06450/13	17/06450/15	17/06450/16	17/06450/17		
Client Sample No										
Client Sample ID	TP15	TP16	TP16A	TP16A	TP17	WS02	WS04	WS05		
Depth to Top	1.50	0.10	0.20	0.50	0.20	0.20	0.30	0.20		
Depth To Bottom										
Date Sampled	07-Sep-17	07-Sep-17	08-Sep-17	08-Sep-17	07-Sep-17	06-Sep-17	30-Aug-17	30-Aug-17		J.
Sample Type	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil		Method ref
Sample Matrix Code	5A	4AE	4AE	5AE	5AE	5AE	5A	5AE	Units	Meth
Pest-c										
Mevinphos _A	-	-	<50	-	<50	-	-	-	μg/kg	Subcon
Dichlorvos _A	-	-	<50	-	<50	-	-	-	μg/kg	Subcon
alpha-Hexachlorocyclohexane (HCH) _A	-	-	<50	-	<50	-	-	-	μg/kg	Subcon
Diazinon _A	-	-	<50	-	<50	-	-	-	μg/kg	Subcon
gamma-Hexachlorocyclohexane (HCH / Lindane) _A	•	-	<50	-	<50	-	-	-	μg/kg	Subcon
Heptachlor _A		•	<50	-	<50	-	•	-	μg/kg	Subcon
Aldrin _A	-	-	<50	-	<50	-	-	-	μg/kg	Subcon
beta-Hexachlorocyclohexane (HCH) _A		•	<50	-	<50	-	•	-	μg/kg	Subcon
Methyl Parathion _A	-	-	<50	-	<50	-	-	-	μg/kg	Subcon
Malathion _A	-	-	<50	-	<50	-	-	-	μg/kg	Subcon
Fenitrothion _A	-	-	<50	-	<50	-	-	-	μg/kg	Subcon
Heptachlor Epoxide _A	-	-	<50	-	<50	-	-	-	μg/kg	Subcon
Parathion (Ethyl Parathion) _A	-	-	<50	-	<50	-	-	-	μg/kg	Subcon
p,p-DDE _A	-	-	<50	-	<50	-	-	-	μg/kg	Subcon
p,p-DDT _A	-	-	<50	-	<50	-	-	-	μg/kg	Subcon
p,p-Methoxychlor _A	-	-	<50	-	<50	-	-	-	μg/kg	Subcon
p,p-TDE (DDD) _A	-	-	<50	-	<50	-	-	-	μg/kg	Subcon
o,p-DDE _A	-	-	<50	-	<50	-	-	-	μg/kg	Subcon
o,p-DDT _A	-	-	<50	-	<50	-	-	-	μg/kg	Subcon
o,p-Methoxychlor _A	-	-	<50	-	<50	-	-	-	μg/kg	Subcon
o,p-TDE (DDD) _A	-	-	<50	-	<50	-	-	-	μg/kg	Subcon
Endosulphan I _A	-	-	<50	-	<50	-	-	-	μg/kg	Subcon
Endosulphan II _A	-	-	<50	-	<50	-	-	-	μg/kg	Subcon
Endosulphan Sulphate _A	-	-	<50	-	<50	-	-	-	μg/kg	Subcon
Endrin _A	-	-	<50	-	<50	-	-	-	μg/kg	Subcon
Ethion _A	-	-	<50	-	<50	-	-	-	μg/kg	Subcon
Dieldrin _A	-	-	<50	-	<50	-	-	-	μg/kg	Subcon
Azinphos-methyl _A	-	-	<50	-	<50	-	-	-	μg/kg	Subcon

						ect Net. 31				
Lab Sample ID	17/06450/9	17/06450/10	17/06450/11	17/06450/12	17/06450/13	17/06450/15	17/06450/16	17/06450/17		
Client Sample No										
Client Sample ID	TP15	TP16	TP16A	TP16A	TP17	WS02	WS04	WS05		
Depth to Top	1.50	0.10	0.20	0.50	0.20	0.20	0.30	0.20		
Depth To Bottom										
Date Sampled	07-Sep-17	07-Sep-17	08-Sep-17	08-Sep-17	07-Sep-17	06-Sep-17	30-Aug-17	30-Aug-17		f
Sample Type	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil		Method ref
Sample Matrix Code	5A	4AE	4AE	5AE	5AE	5AE	5A	5AE	Units	Meth
PAH 16										
Acenaphthene, M#	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	mg/kg	A-T-019s
Acenaphthylene _A ^{M#}	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	mg/kg	A-T-019s
Anthracene _A ^{M#}	<0.02	<0.02	0.02	<0.02	<0.02	<0.02	<0.02	<0.02	mg/kg	A-T-019s
Benzo(a)anthracene _A ^{M#}	<0.04	<0.04	0.16	<0.04	<0.04	<0.04	<0.04	<0.04	mg/kg	A-T-019s
Benzo(a)pyrene _A ^{M#}	<0.04	<0.04	0.28	<0.04	<0.04	<0.04	<0.04	<0.04	mg/kg	A-T-019s
Benzo(b)fluoranthene _A ^{M#}	<0.05	<0.05	0.32	<0.05	<0.05	<0.05	<0.05	<0.05	mg/kg	A-T-019s
Benzo(ghi)perylene _A ^{M#}	<0.05	<0.05	0.29	<0.05	<0.05	<0.05	<0.05	<0.05	mg/kg	A-T-019s
Benzo(k)fluoranthene _A ^{M#}	<0.07	<0.07	0.12	<0.07	<0.07	<0.07	<0.07	<0.07	mg/kg	A-T-019s
Chrysene _A ^{M#}	<0.06	<0.06	0.19	<0.06	<0.06	<0.06	<0.06	<0.06	mg/kg	A-T-019s
Dibenzo(ah)anthracene _A ^{M#}	<0.04	<0.04	0.05	<0.04	<0.04	<0.04	<0.04	<0.04	mg/kg	A-T-019s
Fluoranthene _A ^{M#}	<0.08	<0.08	0.17	<0.08	<0.08	<0.08	<0.08	<0.08	mg/kg	A-T-019s
Fluorene _A ^{M#}	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	mg/kg	A-T-019s
Indeno(123-cd)pyrene _A ^{M#}	<0.03	<0.03	0.25	<0.03	<0.03	<0.03	<0.03	<0.03	mg/kg	A-T-019s
Naphthalene _A ^{M#}	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	mg/kg	A-T-019s
Phenanthrene _A ^{M#}	<0.03	<0.03	0.04	<0.03	<0.03	<0.03	<0.03	<0.03	mg/kg	A-T-019s
Pyrene _A ^{M#}	<0.07	<0.07	0.18	<0.07	<0.07	<0.07	<0.07	<0.07	mg/kg	A-T-019s
PAH (total 16) _A ^{M#}	<0.08	<0.08	2.07	<0.08	<0.08	<0.08	<0.08	<0.08	mg/kg	A-T-019s

					Onent i io	ect Ret: 31	3303			
Lab Sample ID	17/06450/9	17/06450/10	17/06450/11	17/06450/12	17/06450/13	17/06450/15	17/06450/16	17/06450/17		
Client Sample No										
Client Sample ID	TP15	TP16	TP16A	TP16A	TP17	WS02	WS04	WS05		
Depth to Top	1.50	0.10	0.20	0.50	0.20	0.20	0.30	0.20		
Depth To Bottom										
Date Sampled	07-Sep-17	07-Sep-17	08-Sep-17	08-Sep-17	07-Sep-17	06-Sep-17	30-Aug-17	30-Aug-17		.
Sample Type	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil		od re
Sample Matrix Code	5A	4AE	4AE	5AE	5AE	5AE	5A	5AE	Units	Method ref
TPH CWG										
Ali >C5-C6 _A #	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	mg/kg	A-T-022s
Ali >C6-C8 _A #	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	mg/kg	A-T-022s
Ali >C8-C10 _A #	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	mg/kg	A-T-022s
Ali >C10-C12 _A #	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	mg/kg	A-T-023s
Ali >C12-C16 _A #	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	mg/kg	A-T-023s
Ali >C16-C21 _A #	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	mg/kg	A-T-023s
Ali >C21-C35 _A #	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	mg/kg	A-T-023s
Total Aliphatics _A	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	mg/kg	A-T-023s
Aro >C5-C7 _A #	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	mg/kg	A-T-022s
Aro >C7-C8 _A #	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	mg/kg	A-T-022s
Aro >C8-C9 _A #	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	mg/kg	A-T-022s
Aro >C9-C10 _A #	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	mg/kg	A-T-022s
Aro >C10-C12 _A #	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	mg/kg	A-T-023s
Aro >C12-C16 _A #	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	mg/kg	A-T-023s
Aro >C16-C21 _A #	<0.1	<0.1	0.3	<0.1	<0.1	<0.1	<0.1	<0.1	mg/kg	A-T-023s
Aro >C21-C35 _A #	<0.1	<0.1	0.4	<0.1	<0.1	<0.1	<0.1	<0.1	mg/kg	A-T-023s
Total Aromatics _A	<0.1	<0.1	0.8	<0.1	<0.1	<0.1	<0.1	<0.1	mg/kg	A-T-023s
TPH (Ali & Aro) _A	<0.1	<0.1	0.8	<0.1	<0.1	<0.1	<0.1	<0.1	mg/kg	A-T-023s
BTEX - Benzene _A #	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	mg/kg	A-T-022s
BTEX - Toluene _A #	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	mg/kg	A-T-022s
BTEX - Ethyl Benzene _A #	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	mg/kg	A-T-022s
BTEX - m & p Xylene _A #	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	mg/kg	A-T-022s
BTEX - o Xylene _A #	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	mg/kg	A-T-022s
MTBE _A #	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	mg/kg	A-T-022s

					Onent i io	ject Ref: 31			
Lab Sample ID	17/06450/18	17/06450/19	17/06450/21	17/06450/23					
Client Sample No									
Client Sample ID	WS06	WS06	WS08	WS10					,
Depth to Top	0.10	1.50	0.40	0.40					
Depth To Bottom									
Date Sampled	05-Sep-17	05-Sep-17	05-Sep-17	06-Sep-17					4
Sample Type	Soil	Soil	Soil	Soil					Method ref
Sample Matrix Code	5AE	3E	5AE	5A				Units	Meth
% Stones >10mm _A	10.7	<0.1	<0.1	<0.1				% w/w	A-T-044
pH _D ^{M#}	7.66	7.75	8.02	7.97				pН	A-T-031s
Phenols - Total by HPLC _A	0.2	<0.2	<0.2	<0.2				mg/kg	A-T-050s
Total Organic Carbon _D ^{M#}	1.29	2.03	0.65	0.44				% w/w	A-T-032s
Arsenic _D ^{M#}	4	<1	6	6				mg/kg	A-T-024s
Cadmium _D ^{M#}	0.8	<0.5	1.1	0.9				mg/kg	A-T-024s
Copper _D ^{M#}	13	21	13	16				mg/kg	A-T-024s
Chromium _D ^{M#}	22	29	22	28				mg/kg	A-T-024s
Chromium (hexavalent) _D	<1	<1	<1	<1				mg/kg	A-T-040s
Lead _D ^{M#}	17	16	14	13				mg/kg	A-T-024s
Mercury _D	<0.17	<0.17	<0.17	<0.17				mg/kg	A-T-024s
Nickel _D ^{M#}	19	3	23	30				mg/kg	A-T-024s
Selenium _D ^{M#}	<1	<1	<1	<1				mg/kg	A-T-024s
Zinc _D ^{M#}	55	9	65	50				mg/kg	A-T-024s

Lab Sample ID	17/06450/18	17/06450/19	17/06450/21	17/06450/23				
Client Sample No								
Client Sample ID	WS06	WS06	WS08	WS10				
Depth to Top	0.10	1.50	0.40	0.40				
Depth To Bottom								
Date Sampled	05-Sep-17	05-Sep-17	05-Sep-17	06-Sep-17				<u>.</u>
Sample Type	Soil	Soil	Soil	Soil				Method ref
Sample Matrix Code	5AE	3E	5AE	5A			Units	Meth
Asbestos in Soil (inc. matrix)								
Asbestos in soil _A #	NAD	NAD	NAD	NAD				A-T-045
Asbestos ACM - Suitable for Water Absorption Test?	N/A	N/A	N/A	N/A				

Lab Sample ID	17/06450/18	17/06450/19	17/06450/21	17/06450/23				
Client Sample No								
Client Sample ID	WS06	WS06	WS08	WS10				
Depth to Top	0.10	1.50	0.40	0.40				
Depth To Bottom								
Date Sampled	05-Sep-17	05-Sep-17	05-Sep-17	06-Sep-17				Į.
Sample Type	Soil	Soil	Soil	Soil				Method ref
Sample Matrix Code	5AE	3E	5AE	5A			Units	Meth
PAH 16								
Acenaphthene _A ^{M#}	<0.01	<0.01	<0.01	<0.01			mg/kg	A-T-019s
Acenaphthylene _A ^{M#}	<0.01	<0.01	<0.01	<0.01			mg/kg	A-T-019s
Anthracene _A ^{M#}	<0.02	<0.02	<0.02	<0.02			mg/kg	A-T-019s
Benzo(a)anthracene _A ^{M#}	0.06	<0.04	<0.04	<0.04			mg/kg	A-T-019s
Benzo(a)pyrene _A ^{M#}	0.07	<0.04	<0.04	<0.04			mg/kg	A-T-019s
Benzo(b)fluoranthene _A ^{M#}	0.07	<0.05	<0.05	<0.05			mg/kg	A-T-019s
Benzo(ghi)perylene _A ^{M#}	<0.05	0.08	<0.05	<0.05			mg/kg	A-T-019s
Benzo(k)fluoranthene _A ^{M#}	<0.07	<0.07	<0.07	<0.07			mg/kg	A-T-019s
Chrysene _A ^{M#}	<0.06	<0.06	<0.06	<0.06			mg/kg	A-T-019s
Dibenzo(ah)anthracene _A ^{M#}	<0.04	<0.04	<0.04	<0.04			mg/kg	A-T-019s
Fluoranthene _A ^{M#}	0.09	<0.08	<0.08	<0.08			mg/kg	A-T-019s
Fluorene _A ^{M#}	<0.01	<0.01	<0.01	<0.01			mg/kg	A-T-019s
Indeno(123-cd)pyrene _A ^{M#}	0.05	0.06	<0.03	<0.03			mg/kg	A-T-019s
Naphthalene _A ^{M#}	<0.03	<0.03	<0.03	<0.03			mg/kg	A-T-019s
Phenanthrene _A ^{M#}	0.04	<0.03	<0.03	<0.03			mg/kg	A-T-019s
Pyrene _A ^{M#}	<0.07	<0.07	<0.07	<0.07			mg/kg	A-T-019s
PAH (total 16) _A ^{M#}	0.41	0.13	<0.08	<0.08			mg/kg	A-T-019s

					Client Pro	ject Ref: 31	3363		
Lab Sample ID	17/06450/18	17/06450/19	17/06450/21	17/06450/23					
Client Sample No									
Client Sample ID	WS06	WS06	WS08	WS10					
Depth to Top	0.10	1.50	0.40	0.40					
Depth To Bottom									
Date Sampled	05-Sep-17	05-Sep-17	05-Sep-17	06-Sep-17					_
Sample Type	Soil	Soil	Soil	Soil					od re
Sample Matrix Code	5AE	3E	5AE	5A				Units	Method ref
TPH CWG									
Ali >C5-C6 _A #	<0.01	<0.01	<0.01	<0.01				mg/kg	A-T-022s
Ali >C6-C8 _A #	<0.01	<0.01	<0.01	<0.01				mg/kg	A-T-022s
Ali >C8-C10 _A #	<0.01	<0.01	<0.01	<0.01				mg/kg	A-T-022s
Ali >C10-C12 _A #	<0.1	<0.1	<0.1	<0.1				mg/kg	A-T-023s
Ali >C12-C16 _A #	<0.1	<0.1	<0.1	<0.1				mg/kg	A-T-023s
Ali >C16-C21 _A #	<0.1	<0.1	<0.1	<0.1				mg/kg	A-T-023s
Ali >C21-C35 _A #	<0.1	<0.1	<0.1	<0.1				mg/kg	A-T-023s
Total Aliphatics _A	<0.1	<0.1	<0.1	<0.1				mg/kg	A-T-023s
Aro >C5-C7 _A #	<0.01	<0.01	<0.01	<0.01				mg/kg	A-T-022s
Aro >C7-C8 _A #	<0.01	<0.01	<0.01	<0.01				mg/kg	A-T-022s
Aro >C8-C9 _A #	<0.01	<0.01	<0.01	<0.01				mg/kg	A-T-022s
Aro >C9-C10 _A #	<0.01	<0.01	<0.01	<0.01				mg/kg	A-T-022s
Aro >C10-C12 _A #	<0.1	<0.1	<0.1	<0.1				mg/kg	A-T-023s
Aro >C12-C16 _A #	<0.1	<0.1	<0.1	<0.1				mg/kg	A-T-023s
Aro >C16-C21 _A #	<0.1	<0.1	<0.1	<0.1				mg/kg	A-T-023s
Aro >C21-C35 _A #	<0.1	<0.1	<0.1	<0.1				mg/kg	A-T-023s
Total Aromatics _A	<0.1	<0.1	<0.1	<0.1				mg/kg	A-T-023s
TPH (Ali & Aro) _A	<0.1	<0.1	<0.1	<0.1				mg/kg	A-T-023s
BTEX - Benzene _A #	<0.01	<0.01	<0.01	<0.01				mg/kg	A-T-022s
BTEX - Toluene _A #	<0.01	<0.01	<0.01	<0.01				mg/kg	A-T-022s
BTEX - Ethyl Benzene _A #	<0.01	<0.01	<0.01	<0.01				mg/kg	A-T-022s
BTEX - m & p Xylene _A #	<0.01	<0.01	<0.01	<0.01				mg/kg	A-T-022s
BTEX - o Xylene _A #	<0.01	<0.01	<0.01	<0.01				mg/kg	A-T-022s
MTBE _A #	<0.01	<0.01	<0.01	<0.01				mg/kg	A-T-022s

REPORT NOTES

General:

This report shall not be reproduced, except in full, without written approval from Envirolab.

All samples contained within this report, and any received with the same delivery, will be disposed of one month after the date of this report.

Analytical results reflect the quality of the sample at the time of analysis only.

Opinions and interpretations expressed are outside the scope of our accreditation.

If results are in italic font they are associated with an AQC failure and there is insufficient sample to repeat the analysis. These are not accredited and are unreliable.

A deviating samples report is appended and will indicate if samples or tests have been found to be deviating. Any test results affected may not be an accurate record of the concentration at the time of sampling and, as a result, may be invalid.

Soil chemical analysis:

All results are reported as dry weight (<40°C).

For samples with Matrix Codes 1 - 6 natural stones, brick and concrete fragments >10mm and any extraneous material (visible glass, metal or twigs) are removed and excluded from the sample prior to analysis and reported results corrected to a whole sample basis. This is reported as '% stones >10mm'.

For samples with Matrix Code 7 the whole sample is dried and crushed prior to analysis and this supersedes any "A" subscripts All analysis is performed on the sample as received for soil samples which are positive for asbestos or the client has informed asbestos may be present and/or if they are from outside the European Union and this supersedes any "D" subscripts.

TPH analysis of water by method A-T-007:

Free and visible oils are excluded from the sample used for analysis so that the reported result represents the dissolved phase only.

Electrical Conductivity of water by Method A-T-037:

Results greater than 12900µS/cm @ 25°C / 11550µS/cm @ 20°C fall outside the calibration range and as such are unaccredited.

Asbestos

Asbestos in soil analysis is performed on a dried aliquot of the submitted sample and cannot guarantee to identify asbestos if only present in small numbers as discrete fibres/fragments in the original sample.

Stones etc. are not removed from the sample prior to analysis.

Quantification of asbestos is a 3 stage process including visual identification, hand picking and weighing and fibre counting by sedimentation/phase contrast optical microscopy if required. If asbestos is identified as being present but is not in a form that is suitable for analysis by hand picking and weighing (normally if the asbestos is present as free fibres) quantification by sedimentation is performed. Where ACMs are found a percentage asbestos is assigned to each with reference to 'HSG264, Asbestos: The survey guide' and the calculated asbestos content is expressed as a percentage of the dried soil sample aliquot used.

Predominant Matrix Codes:

1 = SAND, 2 = LOAM, 3 = CLAY, 4 = LOAM/SAND, 5 = SAND/CLAY, 6 = CLAY/LOAM, 7 = OTHER, 8 = Asbestos bulk ID sample. Samples with Matrix Code 7 & 8 are not predominantly a SAND/LOAM/CLAY mix and are not covered by our BSEN 17025 or MCERTS accreditations, with the exception of bulk asbestos which are BSEN 17025 accredited.

Secondary Matrix Codes:

A = contains stones, B = contains construction rubble, C = contains visible hydrocarbons, D = contains glass/metal, E = contains roots/twigs.

Key:

IS indicates Insufficient Sample for analysis.

US indicates Unsuitable Sample for analysis.

NDP indicates No Determination Possible.

NAD indicates No Asbestos Detected.

N/A indicates Not Applicable.

Superscript # indicates method accredited to ISO 17025.

Superscript "M" indicates method accredited to MCERTS.

Subscript "A" indicates analysis performed on the sample as received.

Subscript "D" indicates analysis performed on the dried sample, crushed to pass a 2mm sieve

Please contact us if you need any further information.

APPENDIX I LABORATORY CERTIFICATES FOR GROUNDWATER ANALYSIS

FINAL ANALYTICAL TEST REPORT

Envirolab Job Number: 17/06888

Issue Number: 1 **Date:** 23 October, 2017

Client: RSK Environment Ltd Coventry

Humber Road, Abbey Park

Coventry

UK

CV3 4AQ

Project Manager: Darren Bench/Michael Lawson

Project Name: Roade Bypass

Project Ref: 313583 Order No: N/A

Date Samples Received: 09/10/17
Date Instructions Received: 11/10/17
Date Analysis Completed: 22/10/17

Prepared by: Approved by:

Melanie Marshall Iain Haslock

Laboratory Coordinator Analytical Consultant

					Chefit 1 10	ect Ret: 31	3303		
Lab Sample ID	17/06888/1	17/06888/2	17/06888/3	17/06888/4	17/06888/5	17/06888/6			
Client Sample No									
Client Sample ID	BH01	BH02	BH04	BH05	WS02	WS10			
Depth to Top	17.17	20.15	9.92	7.00	2.80	3.25			
Depth To Bottom									
Date Sampled	05-Oct-17	05-Oct-17	05-Oct-17	05-Oct-17	05-Oct-17	05-Oct-17			<u>.</u>
Sample Type	Water - EW	Water - EW			od re				
Sample Matrix Code	N/A	N/A	N/A	N/A	N/A	N/A		Units	Method ref
pH (w) _a #	6.76	6.89	6.94	7.01	6.86	7.16		рН	A-T-031w
Electrical conductivity @ 20degC (w) _A #	1347	839	787	1090	1785	2560		μs/cm	A-T-037w
Alkalinity (total) (w) Colorimetry _A #	307	296	281	340	291	301		mg/l Ca CO3	A-T-038w
Hardness Total _A #	758	434	452	502	1110	1840		mg/l Ca CO3	A-T-049w
Ammoniacal nitrogen (w) _A #	0.56	0.49	0.09	0.32	0.05	0.07		mg/l	A-T-033w
Nitrate (w) _A #	<0.10	0.12	2.90	<0.10	2.46	0.15		mg/l	A-T-026w
Sulphate (w) _A #	471	158	198	259	788	1520		mg/l	A-T-026w
DOC (w) _A #	3.7	3.8	4.4	2.9	2.7	2.4		mg/l	A-T-032w
Arsenic (dissolved) _A #	<1	<1	<1	1	<1	<1		μg/l	A-T-025w
Boron (dissolved) _A #	1400	2220	277	329	67	109		μg/l	A-T-025w
Cadmium (dissolved) _A #	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2		μg/l	A-T-025w
Calcium (dissolved) _A #	240	134	164	166	379	564		mg/l	A-T-049w
Copper (dissolved) _A #	<1	1	1	<1	1	2		μg/l	A-T-025w
Chromium (dissolved) _A #	1	3	10	<1	7	8		μg/l	A-T-025w
Chromium (hexavalent) (w) _A #	<0.01	<0.01	<0.01	<0.01	<0.01	<0.05		mg/l	A-T-040w
Iron (dissolved) _A #	137	18	19	<10	<10	29		μg/l	A-T-025w
Ferrous iron Fell (w) _A	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1		mg/l	Test kit
Ferric iron Felli (w)	0.1	<0.1	<0.1	<0.1	<0.1	<0.1		mg/l	Calc
Lead (dissolved) _A #	<1	<1	<1	<1	<1	<1		μg/l	A-T-025w
Magnesium (dissolved) _A #	39	24	11	21	40	104		mg/l	A-T-049w
Mercury (dissolved) _A #	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1		μg/l	A-T-025w
Nickel (dissolved) _A #	8	3	8	2	29	24		μg/l	A-T-025w
Selenium (dissolved) _A #	1	2	5	<1	24	3		μg/l	A-T-025w
Zinc (dissolved) _A #	31	21	27	<1	40	139		μg/l	A-T-025w

					Cilent Pro	ject Ref: 31	3363		
Lab Sample ID	17/06888/1	17/06888/2	17/06888/3	17/06888/4	17/06888/5	17/06888/6			
Client Sample No									
Client Sample ID	BH01	BH02	BH04	BH05	WS02	WS10			
Depth to Top	17.17	20.15	9.92	7.00	2.80	3.25			
Depth To Bottom									
Date Sampled	05-Oct-17	05-Oct-17	05-Oct-17	05-Oct-17	05-Oct-17	05-Oct-17			_
Sample Type	Water - EW			od re					
Sample Matrix Code	N/A	N/A	N/A	N/A	N/A	N/A		Units	Method ref
PAH 16MS (w)									
Acenaphthene (w) _A #	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01		μg/l	A-T-019w
Acenaphthylene (w) _A #	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01		μg/l	A-T-019w
Anthracene (w) _A [#]	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01		μg/l	A-T-019w
Benzo(a)anthracene (w) _A #	<0.01	<0.01	<0.01	<0.01	<0.01	0.03		μg/l	A-T-019w
Benzo(a)pyrene (w) _A #	<0.01	<0.01	<0.01	<0.01	<0.01	0.05		μg/l	A-T-019w
Benzo(b)fluoranthene (w) _A #	<0.01	<0.01	<0.01	<0.01	<0.01	0.04		μg/l	A-T-019w
Benzo(ghi)perylene (w) _A #	<0.01	<0.01	<0.01	<0.01	<0.01	0.02		μg/l	A-T-019w
Benzo(k)fluoranthene (w) _A #	<0.01	<0.01	<0.01	<0.01	<0.01	0.02		μg/l	A-T-019w
Chrysene (w) _A #	<0.01	<0.01	<0.01	<0.01	<0.01	0.03		μg/l	A-T-019w
Dibenzo(ah)anthracene (w) _A #	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01		μg/l	A-T-019w
Fluoranthene (w) _A #	<0.01	<0.01	0.02	<0.01	<0.01	0.05		μg/l	A-T-019w
Fluorene (w) _A #	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01		μg/l	A-T-019w
Indeno(123-cd)pyrene (w) _A #	<0.01	<0.01	<0.01	<0.01	<0.01	0.03		μg/l	A-T-019w
Naphthalene (w) _A #	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01		μg/l	A-T-019w
Phenanthrene (w) _A #	<0.01	<0.01	0.02	<0.01	<0.01	0.02		μg/l	A-T-019w
Pyrene (w) _A #	<0.01	<0.01	0.02	<0.01	<0.01	0.04		μg/l	A-T-019w
PAH (total 16) (w) _A #	<0.01	<0.01	0.06	<0.01	<0.01	0.33		μg/l	A-T-019w
Phenols (speciated HPLC) (w)								 	
Phenol (w) _A	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01		mg/l	A-T-050w
Cresols (w) _A	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01		mg/l	A-T-050w
Xylenols (w) _A	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01		mg/l	A-T-050w
Resorcinol (w) _A	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01		mg/l	A-T-050w
Phenols - Total by HPLC (w) _A	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01		mg/l	A-T-050w

		1	ı	1		Г	1	1	1	
Lab Sample ID	17/06888/1	17/06888/2	17/06888/3	17/06888/4	17/06888/5	17/06888/6				
Client Sample No										
Client Sample ID	BH01	BH02	BH04	BH05	WS02	WS10				
Depth to Top	17.17	20.15	9.92	7.00	2.80	3.25				
Depth To Bottom										
Date Sampled	05-Oct-17	05-Oct-17	05-Oct-17	05-Oct-17	05-Oct-17	05-Oct-17				
Sample Type	Water - EW				od re					
Sample Matrix Code	N/A	N/A	N/A	N/A	N/A	N/A			Units	Method ref
SVOC (excluding PAH-16) (w)										
2,4,5-Trichlorophenol _A	<2	<2	<1	<1	-	-			μg/l	A-T-052w
2,4,6-Trichlorophenol _A	<2	<2	<1	<1	-	-			μg/l	A-T-052w
2,4-Dichlorophenol _A	<2	<2	<1	<1	-	-			μg/l	A-T-052w
2,4-Dimethylphenol _A	<2	<2	<1	<1	-	-			μg/l	A-T-052w
2,4-Dinitrotoluene _A	<2	<2	<1	<1	-	-			μg/l	A-T-052w
2,6-Dinitrotoluene _A	<2	<2	<1	<1	-	-			μg/l	A-T-052w
2-Chloronaphthalene _A	<2	<2	<1	<1	-	-			μg/l	A-T-052w
2-Chlorophenol _A	<2	<2	<1	<1	-	-			μg/l	A-T-052w
2-Methylnaphthalene _A	<2	<2	<1	<1	-	-			μg/l	A-T-052w
2-Methylphenol _A	<2	<2	<1	<1	-	-			μg/l	A-T-052w
2-Nitrophenol _A	<2	<2	<1	<1	-	-			μg/l	A-T-052w
4-Bromophenyl phenyl ether _A	<2	<2	<1	<1	-	-			μg/l	A-T-052w
4-Chloro-3-methylphenol _A	<2	<2	<1	<1	-	-			μg/l	A-T-052w
Bis(2-chloroisopropyl)ether _A	<2	<2	<1	<1	-	-			μg/l	A-T-052w
4-Methylphenol _A	<2	<2	<1	<1	-	-			μg/l	A-T-052w
4-Nitrophenol _A	<2	<2	<1	<1	-	-			μg/l	A-T-052w
Bis(2-chloroethyl)ether _A	<2	<2	<1	<1	-	-			μg/l	A-T-052w
Bis(2-chloroethoxy)methane _A	<2	<2	<1	<1	-	-			μg/l	A-T-052w
Bis(2-ethylhexyl)phthalate _A	<20	<20	<10	<10	-	-			μg/l	A-T-052w
Butylbenzyl phthalate _A	<2	<2	<1	<1	-	-			μg/l	A-T-052w
Carbazole _A	<2	<2	<1	<1	-	-			μg/l	A-T-052w
Dibenzofuran _A	<2	<2	<1	<1	-	-			μg/l	A-T-052w
n-Dibutylphthalate _A	<2	<2	<1	<1	-	-			μg/l	A-T-052w
n-Dioctylphthalate _A	<20	<20	<10	<10	-	-			μg/l	A-T-052w
n-Nitroso-n-dipropylamine _A	<2	<2	<1	<1	-	-			μg/l	A-T-052w
Diethyl phthalate _A	<2	<2	<1	<1	-	-			μg/l	A-T-052w
Dimethyl phthalate _A	<2	<2	<1	<1	-	-			μg/l	A-T-052w
Hexachlorobenzene _A	<2	<2	<1	<1	-	-			μg/l	A-T-052w
Pentachlorophenol _A	<2	<2	<1	<1	-	-			μg/l	A-T-052w
Phenol _A	<2	<2	<1	<1	-	-			μg/l	A-T-052w
Hexachloroethane _A	<2	<2	<1	<1	-	-			μg/l	A-T-052w
Nitrobenzene _A	<2	<2	<1	<1	-	-			μg/l	A-T-052w

Lab Sample ID	17/06888/1	17/06888/2	17/06888/3	17/06888/4	17/06888/5	17/06888/6			
Client Sample No									
Client Sample ID	BH01	BH02	BH04	BH05	WS02	WS10			
Depth to Top	17.17	20.15	9.92	7.00	2.80	3.25			
Depth To Bottom									
Date Sampled	05-Oct-17	05-Oct-17	05-Oct-17	05-Oct-17	05-Oct-17	05-Oct-17			5
Sample Type	Water - EW		10	Method ref					
Sample Matrix Code	N/A	N/A	N/A	N/A	N/A	N/A		Units	Meth
Isophorone _A	<2	<2	<1	<1	-	-		μg/l	A-T-052w
Hexachlorocyclopentadiene _A	<2	<2	<1	<1	-	-		μg/l	A-T-052w
Perylene _A	<2	<2	<1	<1	-	-		μg/l	A-T-052w

T						cct itci. 5 i			
Lab Sample ID	17/06888/1	17/06888/2	17/06888/3	17/06888/4	17/06888/5	17/06888/6			
Client Sample No									
Client Sample ID	BH01	BH02	BH04	BH05	WS02	WS10			
Depth to Top	17.17	20.15	9.92	7.00	2.80	3.25			
Depth To Bottom									
Date Sampled	05-Oct-17	05-Oct-17	05-Oct-17	05-Oct-17	05-Oct-17	05-Oct-17			.
Sample Type	Water - EW			od re					
Sample Matrix Code	N/A	N/A	N/A	N/A	N/A	N/A		Units	Method ref
VOC (w)									
Dichlorodifluoromethane _A #	<1	<1	<1	<1	-	-		μg/l	A-T-006w
Chloromethane _A	<10	<10	<10	<10	-	-		μg/l	A-T-006w
Vinyl Chloride _A #	<1	<1	<1	<1	-	-		μg/l	A-T-006w
Bromomethane _A #	<1	<1	<1	<1	-	-		μg/l	A-T-006w
Chloroethane _A #	<1	<1	<1	<1	-	-		μg/l	A-T-006w
Trichlorofluoromethane _A #	<1	<1	<1	<1	-	-		μg/l	A-T-006w
trans 1,2-Dichloroethene _A #	<1	<1	<1	<1	-	-		μg/l	A-T-006w
Dichloromethane _A	<5	<5	<5	<5	-	-		μg/l	A-T-006w
Carbon Disulphide _A #	<1	<1	<1	<1	-	-		μg/l	A-T-006w
1,1-Dichloroethene _A #	<1	<1	<1	<1	-	-		μg/l	A-T-006w
1,1-Dichloroethane _A #	<1	<1	<1	<1	-	-		μg/l	A-T-006w
cis 1,2-Dichloroethene _A #	<1	<1	<1	<1	-	-		μg/l	A-T-006w
Bromochloromethane _A #	<5	<5	<5	<5	-	-		μg/l	A-T-006w
Chloroform _A	<1	<1	<1	<1	-	-		μg/l	A-T-006w
2,2-Dichloropropane _A #	<1	<1	<1	<1	-	-		μg/l	A-T-006w
1,2-Dichloroethane _A #	<2	<2	<2	<2	-	-		μg/l	A-T-006w
1,1,1-Trichloroethane _A #	<1	<1	<1	<1	-	-		μg/l	A-T-006w
1,1-Dichloropropene _A #	<1	<1	<1	<1	-	-		μg/l	A-T-006w
Benzene _A #	<1	<1	<1	<1	-	-		μg/l	A-T-006w
Carbon Tetrachloride _A #	<1	<1	<1	<1	-	-		μg/l	A-T-006w
Dibromomethane _A #	<1	<1	<1	<1	-	-		μg/l	A-T-006w
1,2-Dichloropropane _A #	<1	<1	<1	<1	-	-		μg/l	A-T-006w
Bromodichloromethane _A #	<10	<10	<10	<10	-	-		μg/l	A-T-006w
Trichloroethene _A #	<1	<1	<1	<1		-		μg/l	A-T-006w
cis 1,3-Dichloropropene _A #	<1	<1	<1	<1	•	-		μg/l	A-T-006w
trans 1,3-Dichloropropene _A #	<1	<1	<1	<1	-	-		μg/l	A-T-006w
1,1,2-Trichloroethane _A #	<1	<1	<1	<1	-	-		μg/l	A-T-006w
Toluene _A #	<1	<1	<1	<1	-	-		μg/l	A-T-006w
1,3-Dichloropropane _A #	<1	<1	<1	<1	-	-		μg/l	A-T-006w
Dibromochloromethane _A #	<3	<3	<3	<3	-	-		μg/l	A-T-006w
1,2-Dibromoethane _A #	<1	<1	<1	<1	-	-		μg/l	A-T-006w
Tetrachloroethene _A #	<1	<1	<1	<1	-	-	 	μg/l	A-T-006w

					Chentino	ject Ret: 31	3303		
Lab Sample ID	17/06888/1	17/06888/2	17/06888/3	17/06888/4	17/06888/5	17/06888/6			
Client Sample No									
Client Sample ID	BH01	BH02	BH04	BH05	WS02	WS10			
Depth to Top	17.17	20.15	9.92	7.00	2.80	3.25			
Depth To Bottom									
Date Sampled	05-Oct-17	05-Oct-17	05-Oct-17	05-Oct-17	05-Oct-17	05-Oct-17			
Sample Type	Water - EW			od rei					
Sample Matrix Code	N/A	N/A	N/A	N/A	N/A	N/A		Units	Method ref
1,1,1,2-Tetrachloroethane _A	<1	<1	<1	<1	-	-		μg/l	A-T-006w
Chlorobenzene _A #	<1	<1	<1	<1	-	-		μg/l	A-T-006w
Ethylbenzene _A #	<1	<1	<1	<1	-	-		μg/l	A-T-006w
m & p Xylene _A #	<1	<1	<1	<1	-	-		μg/l	A-T-006w
Bromoform _A #	<1	<1	<1	<1	-	-		μg/l	A-T-006w
Styrene _A #	<1	<1	<1	<1	-	-		μg/l	A-T-006w
1,1,2,2-Tetrachloroethane _A	<1	<1	<1	<1	-	-		μg/l	A-T-006w
o-Xylene _A #	<1	<1	<1	<1	-	-		μg/l	A-T-006w
1,2,3-Trichloropropane _A #	<1	<1	<1	<1	-	-		μg/l	A-T-006w
Isopropylbenzene _A #	<1	<1	<1	<1	-	-		μg/l	A-T-006w
Bromobenzene _A #	<1	<1	<1	<1	-	-		μg/l	A-T-006w
2-Chlorotoluene _A #	<1	<1	<1	<1	-	-		μg/l	A-T-006w
n-propylbenzene _A #	<1	<1	<1	<1	-	-		μg/l	A-T-006w
4-Chlorotoluene _A #	<1	<1	<1	<1	-	-		μg/l	A-T-006w
1,2,4-Trimethylbenzene _A #	<1	<1	<1	<1	-	-		μg/l	A-T-006w
4-Isopropyltoluene _A #	<1	<1	<1	<1	-	-		μg/l	A-T-006w
1,3,5-Trimethylbenzene _A #	<1	<1	<1	<1	-	-		μg/l	A-T-006w
1,2-Dichlorobenzene _A #	<1	<1	<1	<1	-	-		μg/l	A-T-006w
1,4-Dichlorobenzene _A #	<1	<1	<1	<1	-	-		μg/l	A-T-006w
sec-Butylbenzene _A #	<1	<1	<1	<1	-	-		μg/l	A-T-006w
tert-Butylbenzene _A #	<2	<2	<2	<2	-	-		μg/l	A-T-006w
1,3-Dichlorobenzene _A #	<1	<1	<1	<1	-	-		μg/l	A-T-006w
n-butylbenzene _A #	<1	<1	<1	<1	-	-		μg/l	A-T-006w
1,2-Dibromo-3-chloropropane _A #	<2	<2	<2	<2	-	-		μg/l	A-T-006w
1,2,4-Trichlorobenzene _A #	<3	<3	<3	<3	-	-		μg/l	A-T-006w
1,2,3-Trichlorobenzene _A #	<3	<3	<3	<3	-	-		μg/l	A-T-006w
Hexachlorobutadiene _A #	<1	<1	<1	<1	-	-		μg/l	A-T-006w

					Onem 1 10	ject Ret: 31	0000		
Lab Sample ID	17/06888/1	17/06888/2	17/06888/3	17/06888/4	17/06888/5	17/06888/6			
Client Sample No									
Client Sample ID	BH01	BH02	BH04	BH05	WS02	WS10			
Depth to Top	17.17	20.15	9.92	7.00	2.80	3.25			
Depth To Bottom									
Date Sampled	05-Oct-17	05-Oct-17	05-Oct-17	05-Oct-17	05-Oct-17	05-Oct-17			
Sample Type	Water - EW			od re					
Sample Matrix Code	N/A	N/A	N/A	N/A	N/A	N/A		Units	Method ref
TPH CWG									
Ali >C5-C6 (w) _A #	<1	<1	<1	<1	<1	<1		μg/l	A-T-022w
Ali >C6-C8 (w) _A #	<1	<1	<1	<1	<1	<1		μg/l	A-T-022w
Ali >C8-C10 (w) _A #	<1	<1	<1	<1	<1	<1		μg/l	A-T-022w
Ali >C10-C12 (w) _A #	<5	<5	<5	<5	<5	<5		μg/l	A-T-023w
Ali >C12-C16 (w) _A #	<5	<5	<5	<5	<5	<5		μg/l	A-T-023w
Ali >C16-C21 (w) _A #	<5	<5	<5	<5	<5	<5		μg/l	A-T-023w
Ali >C21-C35 (w) _A #	<5	<5	<5	<5	<5	<5		μg/l	A-T-023w
Total Aliphatics (w) _A	<5	<5	<5	<5	<5	<5		μg/l	A-T-022+23w
Aro >C5-C7 (w) _A #	<1	<1	<1	<1	<1	<1		μg/l	A-T-022w
Aro >C7-C8 (w) _A #	<1	<1	<1	<1	<1	<1		μg/l	A-T-022w
Aro >C8-C9 (w) _A #	<1	<1	<1	<1	<1	<1		μg/l	A-T-022w
Aro >C9-C10 (w) _A #	<1	<1	<1	<1	<1	<1		μg/l	A-T-022w
Aro >C10-C12 (w) _A #	<5	<5	<5	<5	<5	<5		μg/l	A-T-023w
Aro >C12-C16 (w) _A #	<5	<5	<5	<5	<5	<5		μg/l	A-T-023w
Aro >C16-C21 (w) _A #	<5	<5	<5	<5	<5	<5		μg/l	A-T-023w
Aro >C21-C35 (w) _A #	<5	<5	<5	<5	<5	<5		μg/l	A-T-023w
Total Aromatics (w) _A	<5	<5	<5	<5	<5	<5		μg/l	A-T-022+23w
TPH (Ali & Aro) (w) _A	<5	<5	<5	<5	<5	<5		μg/l	A-T-022+23w
BTEX - Benzene (w) _A #	<1	<1	<1	<1	<1	<1		μg/l	A-T-022w
BTEX - Toluene (w) _A #	<1	<1	<1	<1	<1	<1		μg/l	A-T-022w
BTEX - Ethyl Benzene (w) _A #	<1	<1	<1	<1	<1	<1		μg/l	A-T-022w
BTEX - m & p Xylene (w) _A #	<1	<1	<1	<1	<1	<1		μg/l	A-T-022w
BTEX - o Xylene (w) _A #	<1	<1	<1	<1	<1	<1		μg/l	A-T-022w
MTBE (w) _A #	<1	<1	<1	<1	<1	<1	· · · · · · · · · · · · · · · · · · ·	μg/l	A-T-022w

REPORT NOTES

General:

This report shall not be reproduced, except in full, without written approval from Envirolab.

All samples contained within this report, and any received with the same delivery, will be disposed of one month after the date of this report.

Analytical results reflect the quality of the sample at the time of analysis only.

Opinions and interpretations expressed are outside the scope of our accreditation.

If results are in italic font they are associated with an AQC failure and there is insufficient sample to repeat the analysis. These are not accredited and are unreliable.

A deviating samples report is appended and will indicate if samples or tests have been found to be deviating. Any test results affected may not be an accurate record of the concentration at the time of sampling and, as a result, may be invalid.

Soil chemical analysis:

All results are reported as dry weight (<40°C).

For samples with Matrix Codes 1 - 6 natural stones, brick and concrete fragments >10mm and any extraneous material (visible glass, metal or twigs) are removed and excluded from the sample prior to analysis and reported results corrected to a whole sample basis. This is reported as '% stones >10mm'.

For samples with Matrix Code 7 the whole sample is dried and crushed prior to analysis and this supersedes any "A" subscripts All analysis is performed on the sample as received for soil samples which are positive for asbestos or the client has informed asbestos may be present and/or if they are from outside the European Union and this supersedes any "D" subscripts.

TPH analysis of water by method A-T-007:

Free and visible oils are excluded from the sample used for analysis so that the reported result represents the dissolved phase only.

Electrical Conductivity of water by Method A-T-037:

Results greater than 12900uS/cm @ 25°C / 11550uS/cm @ 20°C fall outside the calibration range and as such are unaccredited.

Asbestos

Asbestos in soil analysis is performed on a dried aliquot of the submitted sample and cannot guarantee to identify asbestos if only present in small numbers as discrete fibres/fragments in the original sample.

Stones etc. are not removed from the sample prior to analysis.

Quantification of asbestos is a 3 stage process including visual identification, hand picking and weighing and fibre counting by sedimentation/phase contrast optical microscopy if required. If asbestos is identified as being present but is not in a form that is suitable for analysis by hand picking and weighing (normally if the asbestos is present as free fibres) quantification by sedimentation is performed. Where ACMs are found a percentage asbestos is assigned to each with reference to 'HSG264, Asbestos: The survey guide' and the calculated asbestos content is expressed as a percentage of the dried soil sample aliquot used.

Predominant Matrix Codes:

1 = SAND, 2 = LOAM, 3 = CLAY, 4 = LOAM/SAND, 5 = SAND/CLAY, 6 = CLAY/LOAM, 7 = OTHER, 8 = Asbestos bulk ID sample. Samples with Matrix Code 7 & 8 are not predominantly a SAND/LOAM/CLAY mix and are not covered by our BSEN 17025 or MCERTS accreditations, with the exception of bulk asbestos which are BSEN 17025 accredited.

Secondary Matrix Codes:

A = contains stones, B = contains construction rubble, C = contains visible hydrocarbons, D = contains glass/metal, E = contains roots/twigs.

Key:

IS indicates Insufficient Sample for analysis.

US indicates Unsuitable Sample for analysis.

NDP indicates No Determination Possible.

NAD indicates No Asbestos Detected.

N/A indicates Not Applicable.

Superscript # indicates method accredited to ISO 17025.

Superscript "M" indicates method accredited to MCERTS.

Subscript "A" indicates analysis performed on the sample as received.

Subscript "D" indicates analysis performed on the dried sample, crushed to pass a 2mm sieve

Please contact us if you need any further information.

APPENDIX J HUMAN HEALTH GENERIC ASSESSMENT CRITERIA

Generic assessment criteria for human health: commercial scenario

Background

RSK's generic assessment criteria (GAC) were initially prepared following the publication by the Environment Agency (EA) of soil guideline value (SGV) and toxicological (TOX) reports, and associated publications in 2009⁽¹⁾. RSK GAC were updated following the publication of GAC by LQM/CIEH in 2009⁽²⁾. RSK GAC are periodically revised when updated information on toxicological, land use or receptor parameters is published.

Updates to the RSK GAC: 2015

In 2014, the publication of Category 4 Screening Levels $(C4SL)^{(3,4)}$, as part of the Defra-funded research project SP1010, included modifications to certain exposure assumptions documented within EA Science Report SC050221/SR3 (herein after referred to as SR3)⁽⁵⁾ used in the generation of SGVs.

C4SL were published for six substances (cadmium, arsenic, benzene, benzo(a)pyrene, chromium VI and lead) for a sandy loam soil type with 6% soil organic matter, based on a low level of toxicological concern (LLTC; see Section 2.3 of research project report SP1010⁽³⁾). Where a C4SL has been published, the RSK GAC duplicates the C4SL published values using all input parameters within the SP1010 final project report⁽³⁾ and associated appendices⁽⁶⁾, and adopts them as GAC for these six substances.

For all other substances the only C4SL exposure modification relevant to a commercial end use are daily inhalation rates.

The RSK GAC have also been revised with updated toxicology published by LQM/CIEH in 2015⁽⁷⁾, where a C4SL has not been published.

RSK GAC derivation for metals and organic compounds

Model selection

Soil assessment criteria (SAC) were calculated using the Contaminated Land Exposure Assessment (CLEA) tool v1.06, supporting EA guidance $^{(5,8,9)}$ and revised exposure scenarios published for the C4SL $^{(3)}$. Groundwater assessment criteria (GrAC) protective of human health via the inhalation pathway were derived using the RBCA 1.3b model. RSK has updated the inputs within RBCA to reflect EA guidance $^{(1,5,8,9)}$. The SAC and GrAC collectively are termed GAC.

Pathway selection

In accordance with SR3⁽⁵⁾ the commercial scenario considers risks to a female worker who works from the age of 16 to 65 years. It should be noted that this end use is not suitable for a workplace nursery but may be appropriate for a sports centre or shopping centre where children are present. In accordance with Box 3.5, SR3⁽⁵⁾ the pathways considered for production of the SAC in the commercial scenario are

- direct soil and dust ingestion
- dermal contact with soil both indoors and outdoors

indoor air inhalation from soil and vapour and outdoor inhalation of soil and vapour.

The pathway considered in production of the GrAC is the volatilisation of compounds from groundwater and subsequent vapour inhalation by residents while indoors. Figure 2 illustrates this linkage. Although the outdoor air inhalation pathway is also valid, this contributes little to the overall risks owing to the dilution in outdoor air. Within RBCA, the solubility limit of the chemical restricts the extent of volatilisation, which in turn drives the indoor air inhalation pathway. While the same restriction is not built into the CLEA model, the CLEA model output cells are flagged red where the soil saturation limit has been exceeded.

With respect to volatilisation, the CLEA model assumes a simple linear partitioning of a chemical in the soil between the sorbed, dissolved and vapour phase⁽⁹⁾. The upper boundaries of this partitioning are represented by the maximum aqueous solubility and pure saturated vapour concentration of the chemical. The CLEA model estimates saturated soil concentrations where these limits are reached⁽⁹⁾. The CLEA software uses a traffic light system to identify when individual and/or combined assessment criteria exceed the lower of either the aqueous- or vapour-based soil saturation limits. Model output cells are flagged red where the saturated soil concentration has been exceeded and the contribution of the indoor and outdoor vapour pathway to total exposure is greater than 10%. In this case, further consideration of the following is required⁽⁹⁾:

- Free phase contamination may be present.
- Exposure from the vapour pathways will be over-predicted by the model, as in reality the vapour phase concentration will not increase at concentrations above saturation limits
- Where the vapour pathway contribution is greater than 90%, it is unlikely the relevant health criteria value (HCV) will be exceeded at soil concentrations at least a factor of ten higher than the relevant HCV.

Where the vapour pathway is the predominant pathway (contributes greater than 90% of exposure) or the only exposure route considered and the cell is highlighted red (SAC exceeds saturation limit), the risk based on the assumed conceptual model is likely to be negligible as the vapour risk is assumed to be tolerable at maximum possible soil concentrations. In such circumstances, the vapour pathway exposure should be considered based on the presence of free phase or non-aqueous phase liquid sources and the measured concentrations of volatile organic compounds (VOC) in the vapour phase. Screening could be considered based on setting the SAC as the modelled soil saturation limits. However, as stated within the CLEA handbook⁽⁹⁾, this is likely to not be practical in many cases because of the very low saturation limits and, in any case, is highly conservative.

It should also be noted that for mixtures of compounds, free phase may be present where soil (or groundwater) concentrations are well below saturation limits for individual compounds.

Where the vapour pathway is only one of the exposure pathways considered, an additional approach can then be utilised as detailed within Section 4.12 of the CLEA model handbook⁽⁹⁾, which explains how to calculate an effective assessment criterion manually.

SR3⁽⁵⁾ states that, as a general rule of thumb, it is recognised that estimating vapour phase concentrations from dissolved and sorbed phase contamination by petroleum hydrocarbons are at least a factor of ten higher than those likely to be measured on-site. RSK has therefore applied an empirical subsurface to indoor air correction factor of 10 into the CLEA model chemical database for all petroleum hydrocarbon fractions (including BTEX, trimethylbenzenes and the

polycyclic aromatic hydrocarbons (PAH) naphthalene, acenaphthene and acenaphthylene) to reduce this conservatism.

Input selection

The most up-to-date published chemical and toxicological data was obtained from EA Report SC050021/SR7⁽¹⁰⁾, the EA TOX⁽¹⁾ reports, the C4SL SP1010 project report and associated appendices^(3,6) or the 2015 LQM/CIEH report⁽⁷⁾. Where a C4SL has been published, the RSK GAC have duplicated the C4SL published values using all input parameters within the SP1010 final project report⁽³⁾ and associated appendices⁽⁶⁾, and has adopted them as GAC for these six substances. Toxicological and specific chemical parameters for aromatic hydrocarbon C_8 – C_9 (styrene), 1,2,4-trimethylbenzene and methyl tertiary-butyl ether (MTBE) were obtained from the CL:AIRE Soil Generic Assessment Criteria report⁽¹¹⁾.

For TPH, aromatic hydrocarbons C_5 – C_8 were not modelled, as this range comprises benzene and toluene, which are modelled separately. The aromatic C_8 – C_9 hydrocarbon fraction comprises ethylbenzene, xylene and styrene. As ethylbenzene and xylene are being modelled separately, the physical, chemical and toxicological data for aromatic C_8 – C_9 have been taken from styrene.

Owing to the lack of UK-specific data, default information in the RBCA model was used to evaluate MTBE. No published UK data was available for 1,3,5-trimethylbenzene, so information was obtained from the RBCA model. RBCA uses toxicity data for the inhalation pathway in different units to the CLEA model and cannot consider separately the mean daily intake (MDI), occupancy periods or breathing rates. Therefore, the HCV in RBCA was amended to take account of

- amendments to the MDI using Table 3.4 of SR2⁽⁸⁾
- an adult weighing 70kg and breathing 14.8m³ air per day in accordance with the UK TOX reports⁽¹²⁾ and SR3⁽⁵⁾. Inhalation rates used in the derivation of the GrAC have not been updated in line with the 2011 USEPA published values⁽¹²⁾; these will be updated in subsequent revisions of the RSK GAC.
- the 50% rule (for petroleum hydrocarbons, trimethylbenzenes and MTBE)^(8,9) where MDI data is not available but background exposure is considered important in the overall exposure.

Physical parameters

For the commercial end use, the CLEA default pre-1970s three-storey office building was used. SR3⁽⁵⁾ notes this commercial building type to be the most conservative in terms of protection from vapour intrusion. The default input building parameters presented in Table 3.10 of SR3⁽⁵⁾ have been used.

The parameters for a sandy loam soil type were used in line with Table 4.4 of SR3⁽⁵⁾. This includes a value of 6% for the percentage of soil organic matter (SOM) within the soil. In RSK's experience, this is rather high for many sites. To avoid undertaking site-specific risk assessments for this SOM, RSK has produced an additional set of GAC for SOM of 1% and 2.5% for all substances using the CLEA tool.

For the GrAC, the depth to groundwater was taken as 2.5m based on RSK's experience of assessing the volatilisation pathway from groundwater. The GrAC were produced using the input parameters in Table 3. Inhalation rates have not been updated.

Summary of modifications to the default CLEA 1.06/SR3⁽⁵⁾ input parameters for a commercial land use

In summary, the RSK commercial GAC were produced using the default input parameters for soil properties, the air dispersion model, building properties and the vapour model detailed in SR3⁽⁵⁾. Modifications to the default SR3⁽⁵⁾ exposure scenarios based on the C4SL exposure scenarios⁽³⁾ are presented in Table 2 below. The sole modification to the default commercial input parameters is the updated inhalation rate.

The final selected GAC are presented by pathway in Table 4 with the combined GAC in Table 5.

Figure 1: Conceptual model for CLEA commercial scenario

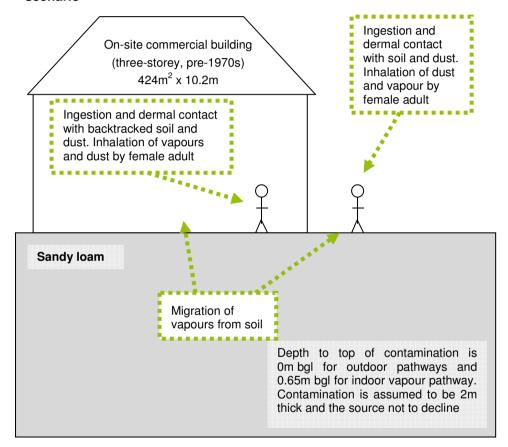


Table 1: Exposure assessment parameters for commercial scenario – inputs for CLEA model

Parameter	Value	Justification
Land use	Commercial	Chosen land use
Receptor	Female worker	Taken as female adult exposed over 49 years from age 16 to 65 years, Box 3.5, SR3 ⁽⁵⁾
Building	Office (pre- 1970)	Key generic assumption given in Box 3.5, SR3 ⁽⁵⁾ . Pre-1970s three-storey office building chosen as it is the most conservative in terms of protection from vapour intrusion (Section 3.4.6, SR3 ⁽⁵⁾)
Soil type	Sandy loam	Most common UK soil type (Section 4.3.1, Table 4.4, SR3 ⁽⁵⁾)
Start age class (AC)	17	AC corresponding to key generic assumption that the critical receptor is a working female adult exposed over a 49-year period from age 16 to 65
End AC	17	years. Assumption given in Box 3.5, SR3 ⁽⁵⁾
SOM (%)	6	Representative of sandy loam according to EA guidance note dated January 2009 entitled 'Changes We Have Made to the CLEA Framework Documents' (13)
, ,	1	To provide SAC for sites where SOM < 6% as often
	2.5	observed by RSK
рН	7	Model default

Commercial Input GAC Rev05_2015_03 T25656

Table 2: Commercial – modified receptor inputs

Parameter	Unit	Value	Justification
Inhalation rate (AC17)	m ³ day ⁻¹	15.7	Mean value USEPA, 2011 ⁽¹²⁾ ; Table 3.2, SP1010 ⁽³⁾

Figure 2: GrAC conceptual model for RBCA commercial scenario

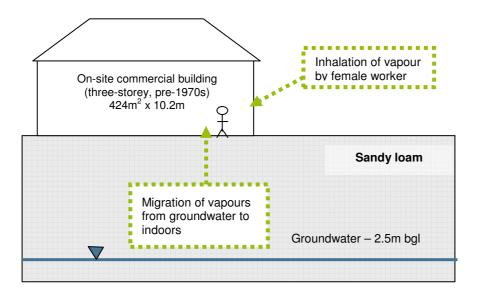


Table 3: Commercial – RBCA inputs

Parameter	Unit	Value	Justification
Receptor			
Averaging time	Years	49	From Box 3.5, SR3 ⁽⁵⁾
Receptor weight	kg	70	Female adult, Table 4.6, SR3 ⁽⁵⁾
Exposure duration	Years	49	From Box 3.5, SR3 ⁽⁵⁾
Exposure frequency	Days/yr	86.25	Weighted using occupancy period of 9 hours per day for 230 days of the year ((9hours x 230 days)/24 hours)
Soil type – sandy loam			
Total porosity	-	0.53	
Volumetric water content	-	0.33	CLEA value for sandy loam. Parameters for sandy loam from Table 4.4, SR3 ⁽⁵⁾
Volumetric air content	-	0.20	

Parameter	Unit	Value	Justification
Dry bulk density	g cm ⁻³	1.21	
Vertical hydraulic conductivity	cm s ⁻¹	3.56E-3	CLEA value for saturated conductivity of sandy loam, Table 4.4, SR3 ⁽⁵⁾
Vapour permeability	m ²	3.05E-12	Calculated for sandy loam using equations in Appendix 1, SR3 ⁽⁵⁾
Capillary zone thickness	m	0.1	Professional judgement
Building			
Building volume/area ratio	m	9.6	Table 3.10, SR3 ⁽⁵⁾
Foundation area	m ²	424	Table 3.10, SR3 ⁽⁵⁾
Foundation perimeter	m	82.40	Based on square root of building area being 20.59m
Building air exchange rate	d ⁻¹	24	Table 3.10, SR3 ⁽⁵⁾
Depth to bottom of foundation slab	m	0.15	Table 3.10, Sh3
Foundation thickness	m	0.15	Table 3.10, SR3 ⁽⁵⁾
Foundation crack fraction	-	3.89E-04	Calculated from floor crack area of 0.165m ² and building footprint of 424m ² in Table 4.21, SR3 ⁽⁵⁾
Volumetric water content of cracks	-	0.33	Assumed equal to underlying soil type in assumption that cracks become filled with soil over time.
Volumetric air content of cracks	-	0.2	Parameters for sandy loam from Table 4.4, SR3 ⁽⁵⁾
Indoor/outdoor differential pressure	Pa	4.4	From Table 3.10, SR3 ⁽⁵⁾

References

- Environment Agency (2009), 'Science Reports SC050021 SGV and TOX reports for: benzene, toluene, ethylbenzene, xylene, mercury, selenium, nickel, arsenic, cadmium, phenol, dioxins, furans and dioxin-like PCBs'; 'Supplementary information for the derivation of SGV for: benzene, toluene, ethylbenzene, xylene, mercury, selenium, nickel, arsenic, cadmium, phenol, dioxins, furans and dioxin-like PCBs', and 'Contaminants in soil: updated collation of toxicological data and intake values for humans: benzene, toluene, ethylbenzene, xylene, mercury, selenium, nickel, arsenic, cadmium, phenol, dioxins, furans and dioxin-like PCBs'. Available at: https://www.gov.uk/government/publications/land-contamination-soil-guideline-values-sqvs (accessed 4 February 2015)
- 2. Nathanial, C. P., McCaffrey, C., Ashmore, M., Cheng, Y., Gillet, A. G., Ogden, R. C. and Scott, D. (2009), *LQM/CIEH Generic Assessment Criteria for Human Health Risk Assessment*, second edition (Nottingham: Land Quality Press).
- 3. Contaminated Land: Applications in Real Environment (CL:AIRE) (2014). 'Development of Category 4 Screening Levels for Assessment of Land Affected by Contamination', Revision 2, DEFRA research project SP1010.
- 4. Department for Environment, Food and Rural Affairs (Defra) (2014), 'SP1010: Development of Category 4 Screening Levels for assessment of land affected by contamination Policy Companion Document', Revision 2.
- 5. Environment Agency (2009), *Science Report SC050021/SR3. Updated technical background to the CLEA model* (Bristol: Environment Agency).
- 6. Contaminated Land: Applications in Real Environment (CL:AIRE) (2014). 'Appendices C to H). DEFRA research project SP1010'.
- 7. Nathanial, C. P., McCaffrey, C., Gillet, A. G., Ogden, R. C. and Nathanial, J. F. (2015), *The LQM/CIEH S4ULs for Human Health Risk Assessment* (Nottingham: Land Quality Press).
- 8. Environment Agency (2009), *Human health toxicological assessment of contaminants in soil. Science Report Final SC050021/SR2* (Bristol: Environment Agency).
- 9. Environment Agency (2009), *Science Report SC050021/SR4 CLEA Software (version 1.05) Handbook* (Bristol: Environment Agency).
- 10. Environment Agency (2008), *Science Report SC050021/SR7. Compilation of Data for Priority Organic Pollutants for Derivation of Soil Guideline Values* (Bristol: Environment Agency).
- 11. CL:AIRE (2009), Soil Generic Assessment Criteria for Human Health Risk Assessment (London: CL:AIRE).
- 12. USEPA (2011), *Exposure factors handbook*, EPA/600/R-090/052F (Washington, DC: Office of Research and Development).
- 13. Environment Agency (2009), 'Changes made to the CLEA framework documents after the three-month evaluation period in 2008', released January 2009.

GENERIC ASSESSMENT CRITERIA FOR HUMAN HEALTH - COMMERCIAL

Table 4
Human health generic assessment criteria by pathway for commercial scenario

Human health generic assessment														
	Notes	GrAC	SAC appropri	ate to pathway SO	OM 1% (mg/kg)	Soil saturation limit	SAC appropr	iate to pathway SOM	1 2.5% (mg/kg)	Soil saturation limit	SAC appropr	iate to pathway S	OM 6% (mg/kg)	Soil saturation
Compound	tes	(mg/l)	Oral	Inhalation	Combined	(mg/kg)	Oral	Inhalation	Combined	(mg/kg)	Oral	Inhalation	Combined	limit (mg/kg)
Metals					•	,		•						
Arsenic	(a,b)	-	6.35E+02	1.25E+03	NR	NR	6.35E+02	1.25E+03	NR	NR	6.35E+02	1.25E+03	NR	NR
Cadmium	(a)	-	NR	NR	4.10E+02	NR	NR	NR	4.10E+02	NR	NR	NR	4.10E+02	NR
Chromium (III) - trivalent	(c)	-	3.31E+05	8.57E+03	8.35E+03	NR	3.31E+05	8.57E+03	8.35E+03	NR	3.31E+05	8.57E+03	8.35E+03	NR
Chromium (VI) - hexavalent	(a,d)	-	7.52E+02	4.91E+01	NR	NR	7.52E+02	4.91E+01	NR	NR	7.52E+02	4.91E+01	NR	NR
Copper		-	1.89E+05	8.96E+04	6.83E+04	NR	1.89E+05	8.96E+04	6.83E+04	NR	1.89E+05	8.96E+04	6.83E+04	NR
Lead	(a)		2.32E+03	NR	NR	NR -	2.32E+03	NR	NR	NR	2.32E+03	NR	NR	NR
Elemental Mercury (Hg ⁰)	(d)	5.60E-02	NR -	1.54E+01	NR	4.31E+00	NR -	3.26E+01	NR	1.07E+01	NR -	5.80E+01	NR -	2.58E+01
Inorganic Mercury (Hg ²⁺)	-	-	1.18E+03	1.97E+04	1.12E+03	NR	1.18E+03	1.97E+04	1.12E+03	NR	1.18E+03	1.97E+04	1.12E+03	NR
Methyl Mercury (Hg ⁴⁺)	+	1.00E+02	3.38E+02	2.13E+03	2.92E+02	7.33E+01	3.38E+02	3.87E+03	3.11E+02	1.42E+02	3.38E+02	7.33E+03	3.23E+02	3.04E+02
Nickel	(d)	-	3.06E+03	9.83E+02	NR 	NR	3.06E+03	9.83E+02	NR	NR	3.06E+03	9.83E+02	NR	NR
Selenium	(b)	-	1.23E+04	NR	NR NB	NR	1.23E+04	NR	NR NB	NR	1.23E+04	NR	NR	NR
Zinc	(b)		7.35E+05 1.69E+04	1.97E+08 1.95E+03	NH 1.81E+03	NR NR	7.35E+05 1.69E+04	1.97E+08 1.95E+03	1.81E+03	NR NR	7.35E+05	1.97E+08 1.95E+03	NR 1.81E+03	NR NR
Cyanide		-	1.69E+04	1.95E+03	1.81E+03	NH	1.69E+04	1.95E+03	1.81E+03	INH	1.69E+04	1.95E+03	1.81E+03	NH
Valatila Ormania Compoundo														
Volatile Organic Compounds Benzene	(a)	1.405.00	1.09E+03	0.705.01	2.72E+01	1.005.00	1.09E+03	F 10F . 01	4.96E+01	0.005.00	1.09E+03	1.08E+02	9.80E+01	4.715.00
Toluene	(a)	1.40E+02 5.90E+02	4.24E+05	2.79E+01 6.49E+04	5.63E+04	1.22E+03 8.69E+02	4.24E+05	5.19E+01 1.43E+05	4.96E+01 1.07E+05	2.26E+03 1.92E+03	4.24E+05	3.24E+05	9.80E+01 1.84E+05	4.71E+03 4.36E+03
Ethylbenzene	1	5.90E+02 1.80E+02	4.24E+05 1.91E+05	5.89E+03	5.63E+04 5.71E+03	8.69E+02 5.18E+02	1.91E+05	1.38E+04	1.28E+04	1.92E+03 1.22E+03	1.91E+05	3.21E+04	1.84E+05 2.75E+04	4.36E+03 2.84E+03
<u> </u>		2.00E+02	3.43E+05	6.26E+03	6.15E+03	6.25E+02	3.43E+05	1.47E+04	1.41E+04	1.47E+03	3.43E+05	3.44E+04	3.12E+04	3.46E+03
Xylene - m Xylene - o		1.70E+02	3.43E+05	6.73E+03	6.60E+03	4.78E+02	3.43E+05	1.57E+04	1.50E+04	1.12E+03	3.43E+05	3.65E+04	3.30E+04	2.62E+03
Xylene - p		2.00E+02	3.43E+05	6.03E+03	5.92E+03	5.76E+02	3.43E+05	1.41E+04	1.36E+04	1.35E+03	3.43E+05	3.28E+04	3.00E+04	3.17E+03
Total xylene		2.00E+02	3.43E+05	6.03E+03	5.92E+03	6.25E+02	3.43E+05	1.41E+04	1.36E+04	1.47E+03	3.43E+05	3.28E+04	3.00E+04	3.46E+03
Methyl tertiary-Butyl ether (MTBE)		4.80E+04	5.72E+05	7.54E+04	6.66E+04	2.04E+04	5.72E+05	1.22E+05	1.01E+05	3.31E+04	5.72E+05	2.31E+05	1.65E+05	6.27E+04
Trichloroethene		3.60E+01	9.53E+02	1.23E+00	1.23E+00	1.54E+03	9.53E+02	2.58E+00	2.57E+00	3.22E+03	9.53E+02	5.72E+00	5.69E+00	7.14E+03
Tetrachloroethene		2.30E+02	1.12E+04	1.86E+01	1.86E+01	4.24E+02	1.12E+04	4.17E+01	4.16E+01	9.51E+02	1.12E+04	9.57E+01	9.49E+01	2.18E+03
1,1,1-Trichloroethane		1.30E+03	1.14E+06	6.60E+02	6.60E+02	1.43E+03	1.14E+06	1.35E+03	1.35E+03	2.92E+03	1.14E+06	2.96E+03	2.95E+03	6.39E+03
1,1,1,2 Tetrachloroethane		1.10E+03	1.10E+04	1.09E+02	1.08E+02	2.60E+03	1.10E+04	2.53E+02	2.47E+02	6.02E+03	1.10E+04	5.88E+02	5.59E+02	1.40E+04
1,1,2,2-Tetrachloroethane		1.10E+03	1.10E+04	2.81E+02	2.74E+02	2.67E+03	1.10E+04	5.75E+02	5.46E+02	5.46E+03	1.10E+04	1.26E+03	1.13E+03	1.20E+04
Carbon Tetrachloride		5.70E+00	7.62E+03	2.87E+00	2.87E+00	1.52E+03	7.62E+03	6.29E+00	6.28E+00	3.32E+03	7.62E+03	1.43E+01	1.42E+01	7.54E+03
1,2-Dichloroethane		6.10E+00	2.29E+02	6.73E-01	6.71E-01	3.41E+03	2.29E+02	9.71E-01	9.67E-01	4.91E+03	2.29E+02	1.67E+00	1.65E+00	8.43E+03
Vinyl Chloride		4.10E-01	2.67E+01	5.95E-02	5.94E-02	1.36E+03	2.67E+01	7.70E-02	7.67E-02	1.76E+03	2.67E+01	1.18E-01	1.17E-01	2.69E+03
1,2,4-Trimethylbenzene		5.70E+01	NR	3.29E+02	NR	4.74E+02	NR	6.41E+02	NR	1.16E+03	NR	1.04E+03	NR	2.76E+03
1,3,5-Trimethylbenzene	(e)	3.80E+01	NR	NR	NR	2.30E+02	NR	NR	NR	5.52E+02	NR	NR	NR	1.30E+03
Semi-Volatile Organic Compounds														
Acenaphthene		3.20E+00	1.10E+05	2.75E+06	1.06E+05	5.70E+01	1.10E+05	5.36E+06	1.08E+05	1.41E+02	1.10E+05	8.83E+06	1.08E+05	3.36E+02
Acenaphthylene		1.61E+01	1.10E+05	2.68E+06	1.05E+05	8.61E+01	1.10E+05	5.23E+06	1.07E+05	2.12E+02	1.10E+05	8.65E+06	1.08E+05	5.06E+02
Anthracene		2.10E-02	5.49E+05	1.13E+07	5.23E+05	1.17E+00	5.49E+05	2.35E+07	5.36E+05	2.91E+00	5.49E+05	4.13E+07	5.42E+05	6.96E+00
Benzo(a)anthracene		3.80E-03	2.84E+02	4.08E+02	1.67E+02	1.71E+00	2.84E+02	4.47E+02	1.74E+02	4.28E+00	2.84E+02	4.67E+02	1.76E+02	1.03E+01
Benzo(b)fluoranthene		2.00E-03	7.13E+01	1.17E+02	4.43E+01	1.22E+00	7.13E+01	1.20E+02	4.47E+01	3.04E+00	7.13E+01	1.21E+02	4.49E+01	7.29E+00
Benzo(g,h,i)perylene		2.60E-04	6.29E+03	1.05E+04	3.93E+03	1.54E-02	6.29E+03	1.06E+04	3.95E+03	3.85E-02	6.29E+03	1.07E+04	3.96E+03	9.23E-02
Benzo(k)fluoranthene		8.00E-04	1.88E+03	3.11E+03	1.17E+03	6.87E-01	1.88E+03	3.17E+03	1.18E+03	1.72E+00	1.88E+03	3.21E+03	1.19E+03	4.12E+00
Chrysene	-	2.00E-03	5.67E+02	8.89E+02	3.46E+02	4.40E-01	5.67E+02	9.25E+02	3.52E+02	1.10E+00	5.67E+02	9.47E+02	3.55E+02	2.64E+00
Dibenzo(a,h)anthracene	-	6.00E-04	5.67E+00	9.32E+00	3.53E+00	3.93E-03	5.67E+00	9.52E+00	3.55E+00	9.82E-03	5.67E+00	9.64E+00	3.57E+00	2.36E-02
Fluoranthene		2.30E-01	2.29E+04	1.89E+06	2.26E+04	1.89E+01	2.29E+04	2.72E+06	2.27E+04	4.73E+01	2.29E+04	3.32E+06	2.27E+04	1.13E+02
Fluorene		1.90E+00	7.31E+04	4.55E+05	6.30E+04	3.09E+01	7.31E+04	1.06E+06	6.84E+04	7.65E+01	7.31E+04	2.24E+06	7.08E+04	1.83E+02
Indeno(1,2,3-cd)pyrene	1	2.00E-04	8.10E+02	1.31E+03	5.01E+02	6.13E-02	8.10E+02	1.35E+03	5.06E+02	1.53E-01	8.10E+02	1.37E+03	5.09E+02	3.68E-01
Phenanthrene	1	5.30E-01	2.28E+04	5.35E+05	2.19E+04	3.60E+01	2.28E+04	1.09E+06	2.24E+04	8.96E+01	2.28E+04	1.86E+06	2.25E+04	2.14E+02
Pyrene	4	1.30E-01	5.49E+04	4.47E+06	5.42E+04	2.20E+00	5.49E+04	6.46E+06	5.44E+04	5.49E+00	5.49E+04	7.91E+06	5.45E+04	1.32E+01
Benzo(a)pyrene	(a)	3.80E-03	7.68E+01	2.04E+02	5.58E+01	9.11E-01	7.68E+01	2.09E+02	5.61E+01	2.28E+00	7.68E+01	2.11E+02	5.63E+01	5.46E+00
Naphthalene		1.90E+01	3.64E+04	1.87E+03	1.78E+03	7.64E+01	3.64E+04	4.39E+03	3.92E+03	1.83E+02	3.64E+04	9.94E+03	7.81E+03	4.32E+02
Phenol		-	1.10E+06	2.65E+04	2.59E+04	2.42E+04	1.10E+06	3.04E+04	2.96E+04	3.81E+04	1.10E+06	3.46E+04	3.35E+04	7.03E+04

GENERIC ASSESSMENT CRITERIA FOR HUMAN HEALTH - COMMERCIAL

Table 4

Human health generic assessment criteria by pathway for commercial scenario

	N Ot	GrAC	SAC appropri	ate to pathway SC	OM 1% (mg/kg)	Soil saturation limit	SAC appropr	riate to pathway SOM	2.5% (mg/kg)	Soil saturation limit	SAC appropri	ate to pathway SO	OM 6% (mg/kg)	Soil saturation
Compound	tes	(mg/l)	Oral	Inhalation	Combined	(mg/kg)	Oral	Inhalation	Combined	(mg/kg)	Oral	Inhalation	Combined	limit (mg/kg)
Total petroleum hydrocarbons														
Aliphatic hydrocarbons EC5-EC6		3.60E+01	4.77E+06	3.19E+03	3.19E+03	3.04E+02	4.77E+06	5.86E+03	5.86E+03	5.58E+02	4.77E+06	1.21E+04	1.21E+04	1.15E+03
Aliphatic hydrocarbons >EC6-EC8		5.40E+00	4.77E+06	7.79E+03	7.78E+03	1.44E+02	4.77E+06	1.74E+04	1.74E+04	3.22E+02	4.77E+06	3.97E+04	3.96E+04	7.36E+02
Aliphatic hydrocarbons >EC8-EC10		4.30E-01	9.53E+04	2.02E+03	2.00E+03	7.77E+01	9.53E+04	4.91E+03	4.85E+03	1.90E+02	9.53E+04	1.17E+04	1.13E+04	4.51E+02
Aliphatic hydrocarbons >EC10-EC12		3.40E-02	9.53E+04	9.97E+03	9.69E+03	4.75E+01	9.53E+04	2.47E+04	2.29E+04	1.18E+02	9.53E+04	5.89E+04	4.73E+04	2.83E+02
Aliphatic hydrocarbons >EC12-EC16		7.60E-04	9.53E+04	8.26E+04	5.88E+04	2.37E+01	9.53E+04	2.04E+05	8.17E+04	5.91E+01	9.53E+04	4.81E+05	9.02E+04	1.42E+02
Aliphatic hydrocarbons >EC16-EC35	(b)	-	1.58E+06	NR	NR	8.48E+00	1.75E+06	NR	NR	2.12E+01	1.83E+06	NR	NR	5.09E+01
Aliphatic hydrocarbons >EC35-EC44	(b)	-	1.58E+06	NR	NR	8.48E+00	1.75E+06	NR	NR	2.12E+01	1.83E+06	NR	NR	5.09E+01
Aromatic hydrocarbons >EC8-EC9 (styre	ene)	6.50E+01	2.29E+04	3.66E+04	1.41E+04	6.26E+02	2.29E+04	8.39E+04	1.80E+04	1.44E+03	2.29E+04	1.93E+05	2.04E+04	3.35E+03
Aromatic hydrocarbons >EC ₉ -EC ₁₀		6.50E+01	3.81E+04	3.55E+03	3.46E+03	6.13E+02	3.81E+04	8.66E+03	8.11E+03	1.50E+03	3.81E+04	2.05E+04	1.70E+04	3.58E+03
Aromatic hydrocarbons >EC10-EC12		2.50E+01	3.81E+04	1.92E+04	1.62E+04	3.64E+02	3.81E+04	4.69E+04	2.79E+04	8.99E+02	3.81E+04	1.10E+05	3.42E+04	2.15E+03
Aromatic hydrocarbons >EC12-EC16		5.80E+00	3.81E+04	2.02E+05	3.62E+04	1.69E+02	3.81E+04	4.76E+05	3.73E+04	4.19E+02	3.81E+04	1.03E+06	3.78E+04	1.00E+03
Aromatic hydrocarbons >EC16-EC21	(b)	-	2.82E+04	NR	NR	5.37E+01	2.83E+04	NR	NR	1.34E+02	2.84E+04	NR	NR	3.21E+02
Aromatic hydrocarbons >EC21-EC35	(b)	-	2.84E+04	NR	NR	4.83E+00	2.84E+04	NR	NR	1.21E+01	2.84E+04	NR	NR	2.90E+01
Aromatic hydrocarbons >EC35-EC44	(b)	-	2.84E+04	NR	NR	4.83E+00	2.84E+04	NR	NR	1.21E+01	2.84E+04	NR	NR	2.90E+01

Notes:

EC - equivalent carbon. GrAC - groundwater screening value. SAC - soil screening value.

The CLEA model output is colour coded depending upon whether the soil saturation limit has been exceeded.

Calculated SAC exceeds soil saturation limit and may significantly affect the interpretation of any exceedances as the contribution of the indoor and outdoor vapour pathway to total exposure is

>10%. This shading has also been used for the RBCA output where the theoretical solubility limit has been exceeded.

Calculated SAC exceeds soil saturation limit but the exceedance will not affect the SAC significantly as the contribution of the indoor and outdoor vapour pathway to total exposure is <10%.

Calculated SAC does not exceed the soil saturation limit.

For consistency where the theoretical solubility limit within RBCA has been exceeded in production of the GrAC, these cellls have also been hatched red and the GrAC set at the solubility limit.

The SAC for organic compounds are dependant upon soil organic matter (SOM) (%) content. To obtain SOM from total organic carbon (TOC) (%) divide by 0.58. 1% SOM is 0.58% TOC. DL Rowell Soil Science: Methods and Applications, Longmans, 1994.

SAC for TPH fractions, polycyclic aromatic hydrocarbons, MTBE, BTEX and trimethylbenzene compounds were produced using an attenuation factor for the indoor air inhalation pathway of 10 to reduce conservatism associated with the vapour inhalation pathway (Section 10.1.1, SR3)

- (a) SAC for arsenic, benzene, benzo(a)pyrene, cadmium, chromium VI and lead are derived using the C4SL toxicology data.
- (b) SAC for selenium should not include the inhalation pathway as no expert group HCV has been derived; aliphatic and aromatic hydrocarbons >EC16 should not include inhalation pathway due to their non-volatile nature and inhalation exposure being minimal (oral, dermal and inhalation exposure is compared to the oral HCV); arsenic should only be based on oral contribution (rather than combined) owing to the relative small contribution from inhalation in accordance with the SGV report. The Oral SAC should be adopted for zinc and benzo(a)pyrene.
- (c) SAC for CrIII should be based on the lower of the oral and inhalation SAC (see LQM/CIEH 2015 Section 6.8)
- (d) SAC for elemental mercury, chromium VI and nickel should be based on the inhalation pathway only.
- (e) SAC for 1,3,5-trimethylbenzene is not recorded owing to the lack of toxicological data, SAC for 1,2,4 trimethylbenzene may be used.

Table 5 Human Health Generic Assessment Criteria for Commercial Scenario

Compound	GrAC for Groundwater (mg/l)	SAC for Soil SOM 1% (mg/kg)	SAC for Soil SOM 2.5% (mg/kg)	SAC for Soil SOM 6% (mg/kg)
Metals				
Arsenic	-	640	640	640
Cadmium	-	410	410	410
Chromium (III) - trivalent Chromium (VI) - hexavalent	-	8,600	8,600	8,600
Copper Copper	-	49 68,000	49 68,000	49 68,000
Lead	-	2,320	2,320	2,320
Elemental Mercury (Hg ⁰)	0.056	15 (4)	33 (11)	58 (26)
Inorganic Mercury (Hg ²⁺)	-	1,120	1,120	1,120
Methyl Mercury (Hg ⁴⁺)	100	290 (73)	310	320
Nickel	-	980	980	980
Selenium	-	12,000	12,000	12,000
Zinc	-	740,000	740,000	740,000
Cyanide	-	1,800	1,800	1,800
Volatile Organic Compounds				
Benzene	140	27	50	98
Toluene	590	56,000 (869)	107,000 (1,916)	184,000 (4,357)
Ethylbenzene Xylene - m	180 200	6,000 (518) 6,200 (625)	13,000 (1,216) 14,100 (1,474)	27,000 (2,844) 31,200 (3,457)
Xylene - o	170	6,600 (478)	15,000 (1,120)	33,000 (2,618)
Xylene - p	200	5,900 (576)	13,600 (1,353)	30,000 (2,010)
Total xylene	200	5,900 (625)	13,600 (1,474)	30,000 (3,457)
Methyl tertiary-Butyl ether (MTBE)	48000	67,000 (20,400)	101,000 (33,100)	165,000 (62,700)
Trichloroethene	36	1	3	6
Tetrachloroethene	230	20	40	90
1,1,1-Trichloroethane 1,1,1,2 Tetrachloroethane	1300 1100	700 110	1,300 250	3,000 560
1,1,2,2-Tetrachioroethane	1100	270	550	1,130
Carbon Tetrachloride	5.7	2.9	6.3	14.2
1,2-Dichloroethane	6.1	0.67	0.97	1.65
Vinyl Chloride	0.41	0.06	0.08	0.12
1,2,4-Trimethylbenzene	57	330	640	1,040
1,3,5-Trimethylbenzene	38	NR	NR	NR
Semi-Volatile Organic Compounds				
Acenaphthene	3.2	110,000 (57)	110,000 (141)	110,000
Acenaphthylene	16	110,000 (86)	110,000 (212)	110,000
Anthracene Benzo(a)anthracene	0.021 0.0038	520,000 170	540,000 170	540,000 180
Benzo(b)fluoranthene	0.002	44	45	45
Benzo(g,h,i)perylene	0.00026	3,900	3,900	4,000
Benzo(k)fluoranthene	0.0008	1,200	1,200	1,200
Chrysene	0.002	350	350	350
Dibenzo(a,h)anthracene	0.0006	3.5	3.6	3.6
Fluoranthene Fluorene	0.23 1.9	23,000 63,000 (31)	23,000 68,000	23,000 71,000
Indeno(1,2,3-cd)pyrene	0.0002	500	510	71,000 510
Phenanthrene	0.53	22,000	22,000	23,000
Pyrene	0.13	54,000	54,000	54,000
Benzo(a)pyrene	0.0038	77	77	77
Naphthalene	19	1,800 (76)	3,900 (183)	7,800 (432)
Phenol	-	440*	690*	1,300*
Total Petroleum Hydrocarbons				
Aliphatic hydrocarbons EC ₅ -EC ₆	36	3,200 (304)	5,900 (558)	12,100 (1,150)
Aliphatic hydrocarbons >EC ₆ -EC ₈	5.4	7,800 (144)	17,400 (322)	39,600 (736)
Aliphatic hydrocarbons >EC ₈ -EC ₁₀	0.43	2,000 (78)	4,800 (190)	11,300 (451)
Aliphatic hydrocarbons >EC ₁₀ -EC ₁₂	0.034	9,700 (48)	22,900 (118)	47,300 (283)
			82,000 (59)	90,000 (142)
Aliphatic hydrocarbons >EC12-EC18	0.00076	59,000 (24)		
Aliphatic hydrocarbons >EC ₁₂ -EC ₁₆ Aliphatic hydrocarbons >EC ₁₆ -EC ₂₅				1,000.000**
Aliphatic hydrocarbons >EC ₁₆ -EC ₃₅	-	1,000,000**	1,000,000**	1,000,000**
Aliphatic hydrocarbons >EC ₁₆ -EC ₃₅ Aliphatic hydrocarbons >EC ₃₅ -EC ₄₄	-	1,000,000** 1,000,000**	1,000,000** 1,000,000**	1,000,000**
Aliphatic hydrocarbons >EC ₁₆ -EC ₃₅ Aliphatic hydrocarbons >EC ₃₅ -EC ₄₄ Aromatic hydrocarbons >EC ₈ -EC ₉ (styrene)	- - 65	1,000,000** 1,000,000** 14,000 (626)	1,000,000** 1,000,000** 18,000 (1,440)	1,000,000** 20,000 (3,350)
Aliphatic hydrocarbons >EC ₁₆ -EC ₃₅ Aliphatic hydrocarbons >EC ₃₅ -EC ₄₄ Aromatic hydrocarbons >EC ₈ -EC ₉ (styrene) Aromatic hydrocarbons >EC ₉ -EC ₁₀	- - 65 65	1,000,000** 1,000,000** 14,000 (626) 3,500 (613)	1,000,000** 1,000,000** 18,000 (1,440) 8,100 (1,503)	1,000,000** 20,000 (3,350) 17,000 (3,580)
Aliphatic hydrocarbons $>EC_{16}$ - EC_{35} Aliphatic hydrocarbons $>EC_{35}$ - EC_{44} Aromatic hydrocarbons $>EC_{8}$ - EC_{9} (styrene) Aromatic hydrocarbons $>EC_{9}$ - EC_{10} Aromatic hydrocarbons $>EC_{10}$ - EC_{12}	- - 65 65 25	1,000,000** 1,000,000** 14,000 (626) 3,500 (613) 16,000 (364)	1,000,000** 1,000,000** 18,000 (1,440) 8,100 (1,503) 28,000 (899)	1,000,000** 20,000 (3,350) 17,000 (3,580) 34,000 (2,150)
Aliphatic hydrocarbons $>$ EC ₁₆ -EC ₃₅ Aliphatic hydrocarbons $>$ EC ₃₅ -EC ₄₄ Aromatic hydrocarbons $>$ EC ₈ -EC ₉ (styrene) Aromatic hydrocarbons $>$ EC ₉ -EC ₁₀ Aromatic hydrocarbons $>$ EC ₁₀ -EC ₁₂ Aromatic hydrocarbons $>$ EC ₁₂ -EC ₁₆	- - 65 65 25 5.8	1,000,000** 1,000,000** 14,000 (626) 3,500 (613) 16,000 (364) 36,000 (169)	1,000,000** 1,000,000** 18,000 (1,440) 8,100 (1,503) 28,000 (899) 37,000	1,000,000** 20,000 (3,350) 17,000 (3,580) 34,000 (2,150) 38,000
Aliphatic hydrocarbons $>EC_{16}$ - EC_{35} Aliphatic hydrocarbons $>EC_{35}$ - EC_{44} Aromatic hydrocarbons $>EC_{8}$ - EC_{9} (styrene) Aromatic hydrocarbons $>EC_{9}$ - EC_{10} Aromatic hydrocarbons $>EC_{10}$ - EC_{12} Aromatic hydrocarbons $>EC_{12}$ - EC_{16} Aromatic hydrocarbons $>EC_{12}$ - EC_{16} Aromatic hydrocarbons $>EC_{16}$ - EC_{21}	- - 65 65 25	1,000,000** 1,000,000** 14,000 (626) 3,500 (613) 16,000 (364)	1,000,000** 1,000,000** 18,000 (1,440) 8,100 (1,503) 28,000 (899)	1,000,000** 20,000 (3,350) 17,000 (3,580) 34,000 (2,150)
Aliphatic hydrocarbons $>$ EC ₁₆ -EC ₃₅ Aliphatic hydrocarbons $>$ EC ₃₅ -EC ₄₄ Aromatic hydrocarbons $>$ EC ₈ -EC ₉ (styrene) Aromatic hydrocarbons $>$ EC ₉ -EC ₁₀ Aromatic hydrocarbons $>$ EC ₁₀ -EC ₁₂ Aromatic hydrocarbons $>$ EC ₁₂ -EC ₁₆	- - 65 65 25 5.8	1,000,000** 1,000,000** 14,000 (626) 3,500 (613) 16,000 (364) 36,000 (169)	1,000,000** 1,000,000** 18,000 (1,440) 8,100 (1,503) 28,000 (899) 37,000	1,000,000** 20,000 (3,350) 17,000 (3,580) 34,000 (2,150) 38,000

- '-' Generic assessment criteria not calculated owing to low volatility of substance and therefore no pathway, or an absence of toxicological data.
- NR SAC for 1,3,5-trimethylbenzene is not recorded owing to the lack of toxicological data, SAC for 1,2,4 trimethylbenzene may be used EC equivalent carbon. GrAC groundwater assessment criteria. SAC soil assessment criteria.
- * The GAC for Phenol is based on a threshold which is protective of direct contact (SC050021/Phenol SGV report)
- ** Denoted SAC calculated exceeds 100% contaminant, hence 100% (1,000,000mg/kg) has been taken as SAC

The SAC for organic compounds are dependent on Soil Organic Matter (SOM) (%) content. To obtain SOM from total organic carbon (TOC) (%) divide by 0.58. 1% SOM is 0.58% TOC. DL Rowell Soil Science: Methods and Applications, Longmans, 1994.

SAC for TPH fractions, polycyclic aromatic hydrocarbons, MTBE, BTEX and trimethylbenzene compounds were produced using an attenuation factor for the indoor air inhalation pathway of 10 to reduce conservatism associated with the vapour inhalation pathway, section 10.1.1, SR3.

(VALUE IN BRACKETS)

The SAC has been set as the model calculated SAC with the saturation limit shown in brackets.

RSK has adopted an approach for petroleum hydrocarbons in accordance with LQM/CIEH whereby the concentration modelled for each petroleum hydrocarbon fraction has been tabulated as the SAC with the corresponding solubility or vapour saturation limits given in brackets.

(VALUE IN BRACKETS) For consistency where the GrAC exceeds the solubility limit, GrAC has been set at the solubility limit. The GrAC is

conservative since concentrations of the chemical are very unlikely to be at sufficient concentration to result in an exceedance of the health criteria value at the point of exposure (i.e. indoor air) provided free-phase product is absent.

APPENDIX K GENERIC ASSESSMENT CRITERIA FOR PHYTOTOXIC EFFECTS

1

APPENDIX D GENERIC ASSESSMENT CRITERIA FOR PHYTOTOXIC EFFECTS

Several compounds can inhibit plant growth; hence it is important to have generic assessment criteria (GAC) to promote healthy plant growth. In the absence of other published GAC, the GAC have been obtained from legislation (UK and European) and guidance related to the use of sewage sludge on agricultural fields.

The Council of European Communities Sewage Sludge Directive (86/278/EEC) dated 1986, has been transposed into UK law by Statutory Instrument No. 1263, The Sludge (use in Agriculture) Regulations 1989 (Public Health England, Wales and Scotland), as amended in 1990 and The Sludge (use in Agriculture) Regulations (Northern Ireland) SR No, 245, 1990. In addition the Department of Environment (DoE) produced a Code of Practice (CoP) (Updated 2nd Edition) in 2006 which provided guidance on the application of sewage sludge on agricultural land (however the status of this document is unclear as it is on the archive section of the Defra website).

The directive seeks to encourage the use of sewage sludge in agriculture and to regulate its use in such a way as to "prevent harmful effects on soil, vegetation, animals and man". To this end, it prohibits the use of untreated sludge on agricultural land unless it is injected or incorporated into the soil. Treated sludge is defined as having undergone "biological, chemical or heat treatment, long-term storage or any other appropriate process so as significantly to reduce its fermentability and the health hazards resulting from its use". To provide protection against potential health risks from residual pathogens, sludge must not be applied to soil in which fruit and vegetable crops are growing, or less than ten months before fruit and vegetable crops are to be harvested. Grazing animals must not be allowed access to grassland or forage land less than three weeks after the application of sludge.

The specified limits of concentrations of selected elements in soil are presented in Table 4 of the updated 2nd Edition of the DoE Code of Practice and are designed to protect plant growth. It is noted that these values are more stringent than the values set in current UK regulations. However since they were amended following recommendations from the Independent Scientific Committee in 1993. (MAFF/DOE 1993). The GAC are presented in Table 1.

Table 1: Generic assessment criteria

Determinant	Generic assessment criteria (mg/kg)									
Determinant	pH 5.0 < 5.5	pH 5.5 < 6.0	pH 6.0 < 7.0	pH >7.0						
Zinc	200	200	200	300						
Copper	80	100	135	200						
Nickel	50	60	75	110						
Lead	300	300	300	300						
Cadmium	3	3	3	3						
Mercury	1	1	1	1						

Note: Only compounds with assessment criteria documented within the Directive 86/278/EEC have been included, although criteria for 5 additional compounds have been presented within the 2006 CoP.

APPENDIX L GENERIC ASSESSMENT CRITERIA FOR CONTROLLED WATERS

GENERIC ASSESSMENT CRITERIA FOR CONTROLLED WATERS

The water environment in the United Kingdom is protected under a number of regulatory regimes. The relevant environmental regulator is consulted where there may be a risk that pollution of 'controlled waters' may occur or may have occurred in the past. Controlled waters are coastal waters, inland freshwaters and groundwater. The EU Water Framework Directive (WFD) (2000/60/EC) is implemented via domestic regulations and guidance, covering aspects of groundwater, surface water and drinking water supply policy. Domestic legislation and guidance will vary across the United Kingdom. Therefore, the relevant legislation for England, Wales, Northern Ireland and Scotland should be reviewed, alongside guidance provided by the Environment Agency (EA), Natural Resource Wales (NRW), the Scottish Environmental Protection Agency (SEPA) or the Northern Ireland Environment Agency (NIEA), as appropriate.

The main objectives of the protection and remediation of groundwater under threat from land contamination are set out in the Environment Agency's Groundwater Protection: Principles and Practice (GP3) document⁽¹⁾. When assessing risks to groundwater the following need to be taken into consideration:

- Where pollutants have not yet entered groundwater, all necessary and reasonable measures must be taken to
 - prevent the input of hazardous substances into groundwater (see description of hazardous substances below)
 - limit the entry of other (non-hazardous) pollutants into groundwater so as to avoid pollution, and to avoid deterioration of the status of groundwater bodies or sustained, upward trends in pollutant concentration.
- Where hazardous substances or non-hazardous pollutants have already entered groundwater, the priority is to
 - minimise further entry of hazardous substances and non-hazardous pollutants into groundwater
 - take necessary and reasonable measures to limit the pollution of groundwater or impact on the status of the groundwater body from the future expansion of a contaminant 'plume', if necessary by actively reducing its extent if the economic, social and environmental benefits of doing so outweigh the costs.

DEFINITIONS

Hazardous substances are defined in the Water Framework Directive 2000/60/EC as 'substances or groups of substances that are toxic, persistent and liable to bio-accumulate, and other substances or groups of substances that give rise to an equivalent level of concern.' All List 1 substances under the old Groundwater Directive (80/68/EEC) are hazardous substances, all radioactive substances are hazardous substances.

Non-hazardous substances are defined as 'substances capable of causing pollution that have not been classified as hazardous substances'. The non-hazardous list of pollutants does not simply replace the old WFD List II but includes a wider range of pollutants.

For the current list of classified substances please visit the UKTAG website www.wfduk.org./jagdag/

When assessing the risks to surface waters, various standards apply, including Environmental Quality Standards (EQS) which are protective of the water ecology.

The Water Supply (Water Quality) Regulations⁽²⁾ are the primary source for assessing water bodies that may be used for public water supplies. The Private Water Supplies Regulations⁽³⁾ may be applicable in some cases.

This appendix presents the generic assessment criteria (GAC) that RSK considers are suitable for assessing risks to controlled waters.

The RSK GAC for controlled waters are presented in Table 1. In line with the Environment Agency's Remedial Targets Methodology, the GAC for controlled waters are termed 'target concentrations'.

The target concentration can be derived by several means with consideration to

- whether the substance is classified as hazardous or non-hazardous by the EU under the WFD (2000/60/EC) and Groundwater Daughter Directive (2006/118/EC) implemented though the Environmental Permitting Regulations 2010
- background concentrations in the aquifer
- published guidance such as EQS that are protective of ecology or The Water Supply (Water Quality) Regulations 2010 that are protective of drinking water
- minimum reporting values (MRV) (or method detection limits if MRV are not provided).

It is important to remember that the WFD and GP3⁽¹⁾ guidance allow a risk-based and a cost-benefit approach to be applied to groundwater contamination. Exceedance of any target concentration does not necessarily imply that an unacceptable risk exists or that remediation is required either on a technical or cost-benefit basis. If pollutant concentrations at a site exceed target concentrations please speak to a member of the QRA group who will assist in making an appropriate assessment and recommendations.

Table 1: Target concentrations for controlled waters

Analytes in bold are hazardous, analytes in italics are non-hazardous, analytes in plain text are unclassified; according to JAGDAG Determination List June 2010 (revised June 2012).

Target concentrations shaded in GREEN are statutory values usually for drinking water or a surface watercourse

ORANGE are non-statutory values

	Target concentrations (mg/l)								
Determinant	Minimum	UK drinking water	EQS or best equivalent						
	reporting standard or best equivalent		Freshwater	Transitional (estuaries) and coastal waters					
		Metals							
Arsenic	-	0.01 ⁽²⁾	0.05 ^(5a)	0.025 ^(5a)					
Cadmium	0.0001 ⁽⁶⁾	0.005 ⁽²⁾	≤0.00008, 0.00008, 0.00009, 0.00015, 0.00025 ^(5b)	0.0002 ^(15c)					
Chromium (total)	-	0.05 ⁽²⁾	Sum values for chromium III and VI						
Chromium (III)		Use value for total chromium	0.0047 ^(5a)	-					
Chromium (VI)] -	Ose value for total chromium	0.0034 ^(5a)	0.0006 ^(5a)					
				0.00376 dissolved, where DOC ≤1mg/l ⁽⁷⁾					
Copper	-	2.0 ⁽²⁾	0.001 bioavailable ⁽⁷⁾	0.00376 + (0.002677 x ((DOC/2) - 0.0005)) µg/l dissolved, where DOC >1mg/l ⁽⁷⁾					
Lead	-	0.025 (before 25/12/2013), 0.01 (after 25/12/2013) ⁽²⁾	0.0072 ^(5c)	0.0072 ^(5c)					

	Target concentrations (mg/l)										
Determinant	Minimum	UK drinking water	EQS or best eq	uivalent							
	reporting value	standard or best equivalent	Freshwater	Transitional (estuaries) and coastal waters							
Mercury	0.00001 ⁽⁶⁾	0.001 ⁽²⁾	0.00005 ^(5c)	0.00005 ^(5c)							
Nickel	-	0.02 ⁽²⁾	0.02 ^(5c)	0.02 ^(5c)							
Selenium	-	0.01 ⁽²⁾	-	-							
Zinc	-	3 ⁽⁴⁾	0.0109 bioavailable plus ambient background concentration (dissolved) ⁽⁷⁾	0.0068 dissolved plus ambient background concentration ⁽⁷⁾							
Chlorinated solvents											
Trichloroethene	0.0001 ⁽⁶⁾	0.01 ⁽²⁾	0.01 ^(5c)	0.01 ^(5c)							
Tetrachloroethene	0.0001 ⁽⁶⁾	0.01 ⁽²⁾	0.01 ^(5c)	0.01 ^(5c)							
Tetrachloroethane	-	-	0.14 ⁽¹⁷⁾	-							
1,1,1-Trichloroethane	0.0001 ⁽⁶⁾	-	0.1 ^(5c)	0.1 ^(5c)							
1,1,2-Trichloroethane	0.0001 ⁽⁶⁾	-	0.4 ^(5c)	0.3 ^(5c)							
Carbon tetrachloride (tetrachloromethane)	0.0001 ⁽⁶⁾	0.003 ⁽²⁾	0.012 ^(5c)	0.012 ^(5c)							
1,2-Dichloroethane	0.001 ⁽⁶⁾	0.003 ⁽²⁾	0.01 ^(5c)	0.01 ^(5c)							
Vinyl chloride (chloroethene)	-	0.0005 ⁽²⁾	-	-							
Trihalomethanes	-	0.1 ^(2, 8)	-	-							
Chloroform (trichloromethane) (one of the trihalomethanes included above)	0.0001 ⁽⁶⁾	0.1 ^(2, 8)	0.0025 ^(5c)	0.0025 ^(5c)							

	Target concentrations (mg/l)							
Determinant	Minimum	UK drinking water	EQS or best eq	uivalent				
	reporting value	standard or best equivalent	Freshwater	Transitional (estuaries) and coastal waters				
	Po	olycyclic aromatic hydrocarbo	ons					
Acenaphthene	-	-	0.0058(5	9)				
Acenaphthylene	-	-	0.0058(5	9)				
Anthracene	-	-	0.0001 ^(5c)	0.0001 ^(15c)				
Benzo(a)anthracene	-	-	0.000018 ⁽⁹⁾					
Benzo(b)fluoranthene	-		0.00003 ^(15f)	0.00003 ^(5f)				
Benzo(k)fluoranthene	-	(2)	0.00003	0.00003				
Benzo(g,h,i)perylene	-	0.0001 ⁽²⁾	0.000002 ^(15g)	0.000002 ^(5g)				
Indeno(1,2,3-cd)pyrene	-		0.000002	0.00002				
Chrysene	-	-	0.00001	9)				
Dibenzo(a,h)anthracene	-	-	0.00001	9)				
Fluoranthene	-	-	0.0001 ^(5c)	0.0001 ^(5c)				
Fluorene	-	-	0.0021 ⁽⁵))				
Phenanthrene	-	-	0.003(9)					
Pyrene	-	-	0.00004	9)				
Benzo(a)pyrene	-	0.00001 ⁽²⁾	0.00005 ^(5c)	0.00005 ^(5c)				
Naphthalene	-	-	0.0024 ^(5c)	0.0012 ^(15c)				
		Petroleum hydrocarbons						
Total petroleum hydrocarbons	-	0.01 ⁽¹¹⁾	0.01 ^(10,1)	1)				
Benzene	0.001 ⁽⁶⁾	0.001 ⁽²⁾	0.01 ^(5c)	0.008 ^(5c)				

	Target concentrations (mg/l)							
Determinant	Minimum	UK drinking water	EQS or best eq	uivalent				
	reporting value	standard or best equivalent	Freshwater	Transitional (estuaries) and coastal waters				
Toluene	0.004 ⁽⁶⁾	0.7 ⁽¹²⁾	0.074 ⁽⁷⁾	0.074 ⁽⁷⁾				
Ethylbenzene	-	0.3 ⁽¹²⁾	0.02 ⁽¹⁴⁾	0.02 ⁽¹⁴⁾				
Xylene	0.003 ⁽⁶⁾	0.5 ⁽¹²⁾	0.03 ^(5c)	0.03 ^(15c)				
Methyl tertiary butyl ether (MTBE)	-	0.015 ⁽¹³⁾						
		Pesticides and herbicides						
Aldrin	0.000003 ⁽⁶⁾	0.00003 ⁽²⁾						
Dieldrin	0.003 ⁽⁶⁾	0.00003 ⁽²⁾	0.00001 ^(5d)	0.000005 ^(5d)				
Endrin	0.000003 ⁽⁶⁾	0.0006 ⁽¹²⁾	0.00001	0.000005				
Isodrin	0.000003 ⁽⁶⁾	-						
Heptachlor	-	0.00003 ⁽²⁾						
Heptachlor epoxide	-	0.00003 ⁽²⁾						
Other individual pesticides	-	0.0001 ⁽²⁾						
Total pesticides	-	0.0005 ⁽²⁾						
Total DDT	0.000006 ⁽⁶⁾	0.001 ⁽¹²⁾	0.000025 ^(5c)	0.000025 ^(15c)				
Azinphos – methyl	0.000001 ⁽⁶⁾	-	0.00001	1)				
Cyfluthrin	0.0001 ⁽⁶⁾	-	0.000001	(14)				
Demetons	0.00005 ⁽⁶⁾	-	0.0005 ⁽¹⁾	4)				
Dichlorvos	-	-	0.000001 ^(5c)	0.00004 ^(5c)				
Dimethoate	0.00001 ⁽⁶⁾	-	0.00048 ^(5a)	0.00048 ^(5a)				
Endosulphan	0.000005 ⁽⁶⁾	-	0.000005 ^(5c)	0.0000005 ^(5c)				

	Target concentrations (mg/l)								
Determinant	Minimum	UK drinking water	EQS or best ed	quivalent					
	reporting value	standard or best equivalent	Freshwater	Transitional (estuaries) and coastal waters					
Fenitrothion	0.000001 ⁽⁶⁾	-	0.00001 ^(5c)	0.00001 ^(5c)					
Flucofuron	0.0001 ⁽⁶⁾	-	0.001 ⁽¹⁾	4)					
Malathion	0.000001 ⁽⁶⁾	-	0.00001 ^(5c)	0.00002 ^(5c)					
Mevinphos	0.000005 ⁽⁶⁾	-	0.00002 ⁽¹⁴⁾	-					
Omethoate	0.0001 ⁽⁶⁾	-	0.00001 ⁽¹⁴⁾						
PCSDs (cyfluthrin, sulcofuron, flucofuron and permethrin)	-	-	0.00005 ⁽¹⁴⁾						
Permethrin	0.000001 ⁽⁶⁾	-	0.00001 ^(5a)	0.00001 ⁽⁵⁾					
Sulcofuron	0.0001 ⁽⁶⁾	-	0.025 ⁽¹⁾	4)					
Triazaphos	0.0001 ⁽⁶⁾	-	0.000005	(15)					
Atrazine	0.00003 ⁽⁶⁾	-	0.0006 ^(5c)	0.0006 ^(5c)					
Simazine	0.00003 ⁽⁶⁾	-	0.001 ^(5c)	0.001 ^(5c)					
Bentazone	0.1 ⁽⁶⁾	-	0.5 ^(5c)	0.5 ^(5a)					
Linuron	0.0001 ⁽⁶⁾	-	0.0005 ^(5a)	0.0005 ^(5a)					
Mecoprop	0.00004 ⁽⁶⁾	-	0.018 ^(5a)	0.018 ^(5a)					
Trifluralin	0.00001 ⁽⁶⁾	-	0.00003 ^(5c)	0.00003 ^(5c)					
		Miscellaneous							
Cyanide (Hydrogen cyanide)	-	0.05 ⁽²⁾	0.001 ^(5a)	0.001 ^(5a)					
Phenol	0.0005 ⁽⁶⁾	-	0.0077 ^(5a)	0.0077 ^(5a)					
Sodium	-	200 ⁽²⁾	-						

	Target concentrations (mg/l)								
Determinant	Minimum	UK drinking water	EQS or best eq	uivalent					
	reporting value	standard or best equivalent	Freshwater	Transitional (estuaries) and coastal waters					
Chloride	-	250 ⁽²⁾	250 ⁽¹⁴⁾	-					
Total ammonia ^{\$} (ammonium (as NH ₄ ⁺) plus ammonia (NH ₃)	-	0.5 ⁽²⁾	0.3 ⁽¹⁶⁾						
Ammonia un-ionised (NH ₃)	-	-	-	0.021 ⁽⁷⁾					
Sulphate	-	250 ⁽²⁾	400 ⁽¹⁴⁾	-					
Iron	-	0.20 ⁽²⁾	1 ^(5a)	1 ^(5a)					
Manganese	-	0.05 ⁽²⁾	0.123 bioavailable ⁽⁷⁾	No EQS required					
Aluminium	-	0.2 ⁽²⁾	-						
Nitrate (as NO ₃)	-	50 ⁽²⁾	-						
Nitrite (as NO ₂)	-	0.1 ⁽²⁾	0.01 ⁽¹⁷⁾	-					

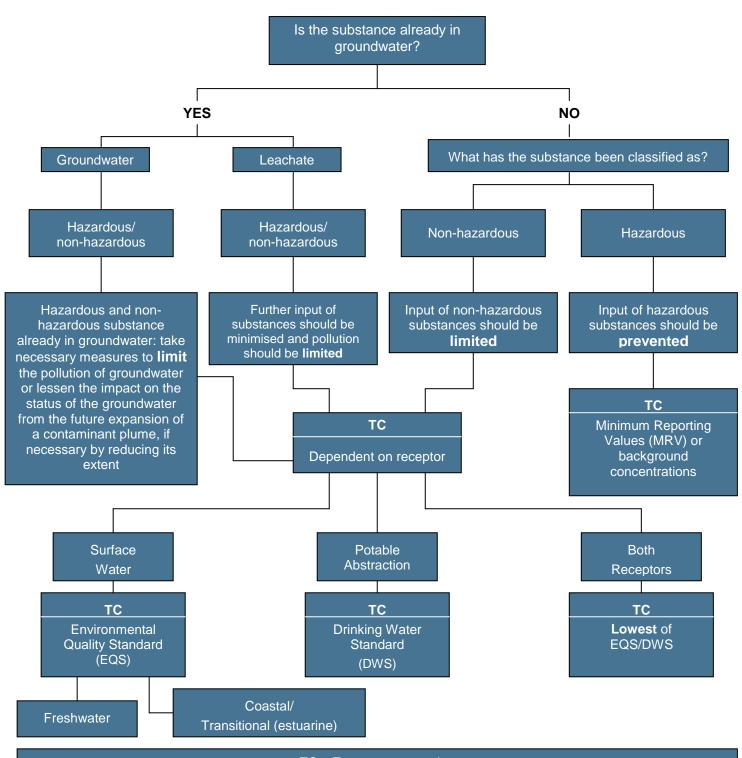
Analytes in bold are hazardous, analytes in italics are non hazardous, analytes in plain text are unclassified. According to JAGDAG Determination List June 2010

Note: '-' A target concentration is not available.

^{\$}Please note that total ammonia (NH₄⁺ and NH₃) is equivalent to ammoniacal nitrogen in laboratory reports

[&]quot;Bioavailable" in relation to copper, zinc and manganese is the generic EQS_{bioavailable}, derived from the Metal Bioavailability Assessment Tool (M-BAT) developed by the Water Framework Directive UK Technical Advisory Group (WFDTAG). Exceedance of this value should prompt a site-specific assessment using the M-BAT with pH, DOC and Ca to derive a site-specific EQS termed the PNEC_{dissolved}. http://www.wfduk.org/resources/rivers-lakes-metal-bioavailability-assessment-tool-m-bat

Notes


- 1. Environment Agency (2013), 'Groundwater Protection: Principles and Policy (GP3) v1.1'.
- 2. The Water Supply (Water Quality) Regulations 2000 (SI 2000/3184), as amended by SI 2001/2885, SI 2002/2469, SI 2005/2035, SI 2007/2734 and SI 2010/991.
- 3. The Private Water Supplies Regulations 1991. SI 1991 / 2790.
- 4. The Surface Waters (Abstraction for Drinking Water) (Classification) Regulations 1996 (as amended). SI 1996 / 3001.
- 5. The River Basin Districts Typology, Standards and Groundwater Threshold Values (Water Framework Directive) (England and Wales) Directions 2010.
- 5a. Annual mean concentration (mg/l) for 'Good' standard
- 5b. Applies to hardness ranges of <40mg/l CaCO₃, 40–<50mg/l CaCO₃, 50–<100mg/l CaCO₃, 100–<200mg/l CaCO₃ and >/=200mg/l CaCO₃. The target concentrations included in Table 1 are listed in order of increasing calcium carbonate concentrations.
- 5c. Annual average EQS (surface waters)
- 5d. Sum of aldrin, dieldrin, endrin and isodrin
- 5e. Applies to hardness ranges of 0–50mg/l CaCO₃, 50–100mg/l CaCO₃, 100–250mg/l CaCO₃ and >250mg/l CaCO₃. The target concentrations included in Table 1 are listed in order of increasing calcium carbonate concentrations; applies to annual mean concentration (mg/l) of CaCO₃. Applies to annual mean concentration of metal (mg/l) for 'Good' standard.
- 5f. Sum of benzo(b)fluoranthene and benzo(k)fluoranthene
- 5g. Sum of benzo(g,h,i)perylene and indeno(1,2,3-cd)pyrene
- Minimum reporting values listed in Annex (J) of Horizontal Guidance Note H1 (H1
 Environmental Risk Assessment Framework, Environment Agency, April 2010 v2.0). Note
 target concentration for xylenes is 0.003mg/l each for o-xylene and m/p xylene.
- 7. DEFRA (2014). Water Framework Directive implementation in England and Wales: new and updated standards to protect the water environment. Table 5.2a: Proposed standards for 29 specific pollutants long-term mean value. Additional information on the Metal Bioavailability Assessment Tool (M-BAT) is available at http://www.wfduk.org/resources/rivers-lakes-metal-bioavailability-assessment-tool-m-bat.
- 8. The Water Supply (Water Quality) Regulations 2000. (SI 2000 / 3184) sum of chloroform, bromoform, dibromochloromethane and bromodichloromethane.
- 9. WRc plc (2002), R&D Technical Report P45. Where predicted no-effect concentration is below the laboratory method detection limit (LMDL) for chrysene, dibenzo(a,h)anthracene and fluoranthene, the target concentration has been set at the LMDL of 0.00001mg/l.
- 10. Please note this is a very conservative value. If necessary please refer to EA (2009). Petroleum hydrocarbons in Groundwater Supplementary Guidance for Hydrogeological Risk Assessment, which provides advice on risk rankings of TPH CWG fractions. It may be possible to eliminate low risk fractions and/or those not detected above LMDL from concern.
- 11. Environment Agency (2009), 'Petroleum hydrocarbons in groundwater: supplementary guidance for hydrogeological risk assessment'.
- 12. WHO (2004), Guidelines for drinking-water quality, 3rd edn.

- 13. Drinking Water Inspectorate (London, UK). Environmental Information Request on MTBE in drinking water. Ref. DWI 1/10/18; dated 28 November 2006. Value is based on the odour threshold for MTBE, which is lower than a health-based guideline value.
- Council Directive on Pollution Caused by Certain Dangerous Substances Discharged into the Aquatic Environment of the Community (Dangerous Substances Directive) - List II Substances (76/464/EEC).
- 15. The Water Framework Directive (200/60/EC). Freshwater Environmental Quality Standards.
- 16. UK TAG January 2008. Proposals for Environmental Quality standards for Annex VIII Substances. Long term 90%ile for upland low alkalinity water. The value for lowland high alkalinity waters is 0.6mg/l. (UKTAG recommends the adoption of the total ammonia standard from the UK Environmental Standards and Conditions (Phase 1) report dated August 2006. UKTAG believes that this approach will provide an effective level of protection for both total and unionised ammonia in freshwaters).
- 17. Council Directive on the Quality of Fresh Waters Needing Protection or Improvement in Order to Support Fish Life (Freshwater Fish Directive) (78/659/EEC)

FLOW CHART TO ASSIST WITH SELECTION OF TARGET CONCENTRATIONS

TC = Target concentration

When leachate is being assessed the 'compliance point' is the groundwater body. Therefore dilution within the groundwater body may be applied <u>with caution</u> before comparing with the TC.

When directly assessing a receptor, e.g., a river, the appropriate TC should be selected.

APPENDIX M GENERIC ASSESSMENT CRITERIA FOR POTABLE WATER SUPPLY PIPES

A range of pipe materials is available and careful selection, design and installation is required to ensure that water supply pipes are satisfactorily installed and meet the requirements of the Water Supply (Water Fittings) Regulations 1999 in England and Wales, the Byelaws 2000 in Scotland and the Northern Ireland Water Regulations. The regulations include a requirement to use only suitable materials when laying water pipes and laying water pipes without protection is not permitted at contaminated sites. The water supply company has a statutory duty to enforce the regulations.

Contaminants in the ground can pose a risk to human health by permeating potable water supply pipes. To fulfil their statutory obligation, UK water supply companies require robust evidence from developers to demonstrate either that the ground in which new plastic supply pipes will be laid is free from specific contaminants, or that the proposed remedial strategy will mitigate any existing risk. If these requirements cannot be demonstrated to the satisfaction of the relevant water company, it becomes necessary to specify an alternative pipe material on the whole development or in specific zones.

In 2010, UK Water Industry Research (UKWIR) published *Guidance for the Selection of Water Supply Pipes to be used in Brownfield Sites* (Report Ref. No. 10/WM/03/21). This report reviewed previously published industry guidelines and threshold concentrations adopted by individual water supply companies.

The focus of the UKWIR research project was to develop clear and concise procedures, which provide consistency in the pipe selection decision process. It was intended to provide guidance that can be used to ensure compliance with current regulations and to prevent water supply pipe failing prematurely due to the presence of contamination.

The report concluded that in most circumstances only organic contaminants pose a potential risk to plastic pipe materials and Table 3.1 of the report provides threshold concentrations for polyethylene (PE) and polyvinyl chloride (PVC) pipes for the organic contaminants of concern. The report also makes recommendations for the procedures to be adopted in the design of site investigations and sampling strategies, and the assessment of data, to ensure that the ground through which water supply pipes will be laid is adequately characterised.

Risks to water supply pipes have therefore been assessed against the threshold concentrations for PE and PVC pipe specified in Table 3.1 of Report 10/WM/03/21, which have been adopted as the GAC for this linkage and are reproduced in Table A3 below.

Since water supply pipes are typically laid at a minimum depth of 0.75m below finished ground levels, sample results from depths between 0.5m and 1.5m below finished level are generally considered suitable for assessing risks to water supply. Samples outside these depths can be used, providing the stratum is the same as that in which water supply pipes are likely to be located. The report specifies that sampling should characterise the ground conditions to a minimum of 0.5m below the proposed depth of the pipe.

It should be noted that the assessment provided in this report is a guide and the method of assessment and recommendations should be checked with the relevant water supply company.

Table A3: Generic assessment criteria for water supply pipes

		Pipe materia	ıl
		GAC (mg/kg)
	Parameter group	PE	PVC
1	Extended VOC suite by purge and trap or head space and GC-MS with TIC (Not including compounds within group 1a)	0.5	0.125
1a	BTEX + MTBE	0.1	0.03
2	SVOCs TIC by purge and trap or head space and GC-MS with TIC (aliphatic and aromatic C_5 – C_{10}) (Not including compounds within group 2e and 2f)	2	1.4
2e	 Phenols 	2	0.4
2f	Cresols and chlorinated phenols	2	0.04
3	Mineral oil C ₁₁ –C ₂₀	10	Suitable
4	Mineral oil C ₂₁ –C ₄₀	500	Suitable
5	Corrosive (conductivity, redox and pH)	Suitable	Suitable
Spec	ific suite identified as relevant following site investigation		
2a	Ethers	0.5	1
2b	Nitrobenzene	0.5	0.4
2c	Ketones	0.5	0.02
2d	Aldehydes	0.5	0.02
6	Amines	Not suitable	Suitable

Notes: where indicated as 'suitable', the material is considered resistant to permeation or degradation and no threshold concentration has been specified by UKWIR.

APPENDIX N COMPARISON OF SOIL ANALYSIS TO HUMAN HEALTH CRITERIA

313583- Roade Bypass- Human Health Risk Assessment Soil Results Summary Table and Direct ^{1 of 3} Comparison

Sample Identity		Industrial/Commercial Screening Value (1% SOM)	TP01	TP02	TP03	TP04	TP05	TP12	TP14
Depth Strata		GACs	0.20	0.20	0.30	0.50	0.20	0.20	0.20
Determinants Visual Fibre Screen	Units		NAD						
ρΗ	pН		7.66	7.15	8.1	8.2	6.86	7.9	7.67
Total Organic Carbon Metals	% w/w		3.73	1.61	2.64	1.69	2.69	0.99	1.33
Arsenic Cadmium	mg/kg mg/kg	640 410	4 0.9	10 1.1	2	<1 1	4 0.7	11 1.1	7
Copper	mg/kg	68000	33	16	24	15	12	15	14
Chromium Chromium (hexavalent)	mg/kg mg/kg	8600 49	36 <1	26 <1	39 <1	37 <1	34 <1	26 <1	26 <1
Lead Mercury	mg/kg mg/kg	2300 1120	30 <0.17	24 <0.17	20 0.3	16 <0.17	21 <0.17	96 <0.17	21 <0.17
Nickel	mg/kg	980	26	24	31	30	21	27	26
Selenium Zinc	mg/kg mg/kg	12000 740000	1 82	1 68	1 69	<1 53	<1 63	<1 73	<1 71
Total Petroleum Hydrocarbons Criteria Working G Ali >C5-C6	roup (TPHCW mg/kg	G) 3200	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Ali >C6-C8	mg/kg	7800	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Ali >C8-C10 Ali >C10-C12	mg/kg mg/kg	2000 9700	<0.01 <0.1						
Ali >C12-C16 Ali >C16-C21	mg/kg mg/kg	59000	<0.1 <0.1						
Ali >C21-C35	mg/kg	Assess as sum below	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Ali >C16-C35 Fotal Aliphatics	mg/kg mg/kg	1000000	<0.1 <0.1						
Aro > C5-C7 Aro > C7-C8	mg/kg mg/kg	27 56000	<0.01 <0.01						
Aro >C8-C9	mg/kg	14000	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Aro >C9-C10 Aro >C10-C12	mg/kg mg/kg	3500 16000	<0.01 <0.1						
Aro >C12-C16 Aro >C16-C21	mg/kg mg/kg	36000 28000	<0.1 <0.1						
Aro >C21-C35	mg/kg	28000	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fotal Aromatics FPH (Ali & Aro)	mg/kg mg/kg		<0.1 <0.1						
BTEX - Benzene BTEX - Toluene	mg/kg mg/kg	27 56000	<0.01 <0.01						
BTEX - Ethyl Benzene	mg/kg	6000	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
BTEX - m & p Xylene BTEX - o Xylene	mg/kg mg/kg	5900 6600	<0.01 <0.01						
MTBE PAHs (Polycyclic Aromatic Hydrocarbons)	mg/kg	67000	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Acenapthene	mg/kg	110000	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Acenapthylene Anthracene	mg/kg mg/kg	110000 520000	<0.01 <0.02						
Benzo(a)anthracene	mg/kg	170	<0.04 0.06	<0.04	<0.04 <0.04	<0.04 <0.04	<0.04 <0.04	<0.04 <0.04	<0.04
Benzo(a)pyrene Benzo(b)fluoranthene	mg/kg mg/kg	77 44	< 0.05	<0.04 <0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.04 <0.05
Benzo(ghi)perylene Benzo(k)fluoranthene	mg/kg mg/kg	3900 1200	<0.05 <0.07						
Chrysene	mg/kg	350 3.5	< 0.06	< 0.06	< 0.06	<0.06	<0.06 <0.04	<0.06 <0.04	< 0.06
Dibenzo(ah)anthracene Fluoranthene	mg/kg mg/kg	23000	<0.04 <0.08	<0.04 <0.08	<0.04 <0.08	<0.04 <0.08	<0.08	<0.08	<0.04 <0.08
Fluorene ndeno(123-cd)pyrene	mg/kg mg/kg	63000 500	<0.01 0.04	<0.01 <0.03	<0.01 <0.03	<0.01 <0.03	<0.01 <0.03	<0.01 <0.03	<0.01 <0.03
Napthalene	mg/kg mg/kg	1800 22000	<0.03 <0.03						
Phenanthrene Pyrene	mg/kg	54000	< 0.07	< 0.07	<0.07	< 0.07	< 0.07	<0.07	< 0.07
Total PAH Drgano Chlorine Pesticides (OCP) and Organo Ph	mg/kg osphorous Pe	esticides (OPP)	0.1	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
Mevinphos Dichlorvos	μg/kg μg/kg	140000		<50 <50				<50 <50	
alpha-Hexachlorocyclohexane (HCH)	μg/kg	170000		<50				<50	
Diazinon gamma-Hexachlorocyclohexane (HCH / Lindane)	μg/kg μg/kg	67000		<50 <50				<50 <50	
Heptachlor Aldrin	μg/kg μg/kg	170000	-	<50 <50		-		<50 <50	
oeta-Hexachlorocyclohexane (HCH)	μg/kg	65000		<50				<50	
Methyl Parathion Malathion	μg/kg μg/kg			<50 <50				<50 <50	
Fenitrothion Heptachlor Epoxide	μg/kg μg/kg			<50 <50				<50 <50	
Parathion (Ethyl Parathion)	μg/kg			<50				<50	
p,p-DDE p,p-DDT	μg/kg μg/kg			<50 <50				<50 <50	
o,p-Methoxychlor o,p-TDE (DDD)	μg/kg μg/kg		-	<50 <50		-		<50 <50	
p,p-DDE	μg/kg			<50				<50	
p.p-DDT p.p-Methoxychlor	μg/kg μg/kg			<50 <50				<50 <50	
p,p-TDE (DDD) Endosulphan I	μg/kg μg/kg	5600000		<50 <50				<50 <50	
Endosulphan II	μg/kg	6300000		<50				<50	
Endosulphan Sulphate Endrin	μg/kg μg/kg			<50 <50				<50 <50	
Ethion Dieldrin	μg/kg μg/kg	170000	-	<50 <50		-		<50 <50	
Azinphos-methyl	μg/kg μg/kg	17 3000		<50 <50				<50 <50	
Nitrogen Pests Ametryn	μg/kg			<50				<50	
Atraton Atrazine	μg/kg	9300000		<50 <50				<50 <50	
Prometon	μg/kg μg/kg	3300000		<50				<50	
	μg/kg μg/kg			<50 <50				<50 <50	
Prometryn				<50				<50	
Prometryn Propazine Simazine	μg/kg								
Prometryn Propazine Simazine Simetryn Ferbuthylazine	µg/kg µg/kg µg/kg			<50 <50				<50 <50	
Prometryn Propazine Simazine Simetryn	μg/kg μg/kg								
Prometryn Propazine Simazine Simetryn Ferbuthylazine	µg/kg µg/kg µg/kg µg/kg	Londuso		<50				<50	

313583- Roade Bypass- Human Health Risk Assessment Soil Results Summary Table and Direct ^{2 of 3} Comparison

Sample Identity		Industrial/Commercial Screening Value (1% SOM)	TP15	TP15	TP16	TP16A	TP16A	TP17	WS02	WS04
Depth		GACs	0.20	1.50	0.10	0.20	0.50	0.20	0.20	0.30
Strata Determinants	Units		NAD							
Visual Fibre Screen pH	pН		NAD 7.4	NAD 8.47	NAD 8.17	NAD 8.78	NAD 8.17	NAD 7.91	NAD 7.66	NAD 8.11
Total Organic Carbon Metals	% w/w		2.07	<0.03	1.43	<0.03	0.58	2.19	1.19	1.93
Arsenic Cadmium	mg/kg mg/kg	640 410	8 1.3	<1 <0.5	3 0.8	1 <0.5	3 0.7	3 0.7	7 1.3	3 0.8
Copper	mg/kg	68000 8600	15 35	5	12	2 4	10	13	13	14 18
Chromium Chromium (hexavalent)	mg/kg mg/kg	49	<1	<1	<1	<1	<1	<1	<1	<1
Lead Mercury	mg/kg mg/kg	2300 1120	22 <0.17	4 <0.17	18 <0.17	0.31	13 <0.17	16 0.29	19 <0.17	16 0.2
Nickel Selenium	mg/kg mg/kg	980 12000	29 <1	11 <1	17 <1	3 <1	17 <1	16 <1	33 1	16 <1
Zinc Total Petroleum Hydrocarbons Criteria Working G	mg/kg	740000	87	16	54	5	45	50	72	52
Ali >C5-C6	mg/kg	3200 7800	<0.01 <0.01							
Ali >C6-C8 Ali >C8-C10	mg/kg mg/kg	2000	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Ali >C10-C12 Ali >C12-C16	mg/kg mg/kg	9700 59000	<0.1 <0.1							
Ali >C16-C21 Ali >C21-C35	mg/kg mg/kg	Assess as sum below	<0.1 <0.1							
Ali >C16-C35	mg/kg	1000000	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1 <0.1
Total Aliphatics Aro >C5-C7	mg/kg mg/kg	27	<0.1 <0.01	<0.01						
Aro >C7-C8 Aro >C8-C9	mg/kg mg/kg	56000 14000	<0.01 <0.01							
Aro >C9-C10 Aro >C10-C12	mg/kg mg/kg	3500 16000	<0.01 <0.1							
Aro >C12-C16 Aro >C16-C21	mg/kg mg/kg	36000 28000	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1
Aro >C21-C35	mg/kg	28000	<0.1	<0.1	<0.1	0.4	<0.1	<0.1	<0.1	<0.1
Total Aromatics TPH (Ali & Aro)	mg/kg mg/kg		<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	0.8	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1
BTEX - Benzene BTEX - Toluene	mg/kg mg/kg	27 56000	<0.01 <0.01							
BTEX - Ethyl Benzene BTEX - m & p Xylene	mg/kg mg/kg	6000 5900	<0.01 <0.01							
BTEX - o Xylene	mg/kg	6600	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
MTBE PAHs (Polycyclic Aromatic Hydrocarbons)	mg/kg	67000	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Acenapthene Acenapthylene	mg/kg mg/kg	110000 110000	<0.01 <0.01							
Anthracene Benzo(a)anthracene	mg/kg mg/kg	520000 170	<0.02 <0.04	<0.02 <0.04	<0.02 <0.04	0.02 0.16	<0.02 <0.04	<0.02 <0.04	<0.02 <0.04	<0.02 <0.04
Benzo(a)pyrene	mg/kg	77	<0.04	<0.04	<0.04	0.28	< 0.04	<0.04	<0.04	< 0.04
Benzo(b)fluoranthene Benzo(ghi)perylene	mg/kg mg/kg	44 3900	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	0.32 0.29	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05
Benzo(k)fluoranthene Chrysene	mg/kg mg/kg	1200 350	<0.07 <0.06	<0.07 <0.06	<0.07 <0.06	0.12 0.19	<0.07 <0.06	<0.07 <0.06	<0.07 <0.06	<0.07 <0.06
Dibenzo(ah)anthracene Fluoranthene	mg/kg mg/kg	3.5 23000	<0.04 <0.08	<0.04 <0.08	<0.04 <0.08	0.05 0.17	<0.04 <0.08	<0.04 <0.08	<0.04 <0.08	<0.04 <0.08
Fluorene	mg/kg	63000 500	<0.01 <0.03	<0.01 <0.03	<0.01 <0.03	<0.01 0.25	<0.01 <0.03	<0.01 <0.03	<0.01 <0.03	<0.01 <0.03
Indeno(123-cd)pyrene Napthalene	mg/kg mg/kg	1800	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
Phenanthrene Pyrene	mg/kg mg/kg	22000 54000	<0.03 <0.07	<0.03 <0.07	<0.03 <0.07	0.04 0.18	<0.03 <0.07	<0.03 <0.07	<0.03 <0.07	<0.03 <0.07
Total PAH Organo Chlorine Pesticides (OCP) and Organo Ph	mg/kg osphorous Pe	esticides (OPP)	<0.08	<0.08	<0.08	2.07	<0.08	<0.08	<0.08	<0.08
Mevinphos Dichloryos	μg/kg μg/kg	140000				<50 <50		<50 <50		
alpha-Hexachlorocyclohexane (HCH) Diazinon	μg/kg μg/kg	170000				<50 <50		<50 <50		
gamma-Hexachlorocyclohexane (HCH / Lindane)	μg/kg	67000				<50		<50		
Heptachlor Aldrin	μg/kg μg/kg	170000				<50 <50		<50 <50		
beta-Hexachlorocyclohexane (HCH) Methyl Parathion	μg/kg μg/kg	65000				<50 <50		<50 <50		
Malathion Fenitrothion	μg/kg μg/kg					<50 <50		<50 <50		
Heptachlor Epoxide	μg/kg					<50		<50		
Parathion (Ethyl Parathion) p,p-DDE	μg/kg μg/kg					<50 <50		<50 <50		
p,p-DDT p,p-Methoxychlor	μg/kg μg/kg					<50 <50		<50 <50		
p,p-TDE (DDD) o,p-DDE	μg/kg μg/kg					<50 <50		<50 <50		
o,p-DDT o,p-Methoxychlor	μg/kg μg/kg					<50 <50		<50 <50		
o,p-TDE (DDD)	μg/kg					<50		<50		
Endosulphan I Endosulphan II	μg/kg μg/kg	5600000 6300000				<50 <50		<50 <50		
Endosulphan Sulphate Endrin	μg/kg μg/kg					<50 <50		<50 <50		
Ethion Dieldrin	μg/kg μg/kg	170000				<50 <50		<50 <50		
Azinphos-methyl	μg/kg	11000				<50		<50		
Nitrogen Pests Ametryn	μg/kg					<50		<50		
Atraton Atrazine	μg/kg μg/kg	9300000				<50 <50		<50 <50		
Prometon Prometryn	μg/kg μg/kg					<50 <50		<50 <50		
Propazine	μg/kg					<50		<50		
Simazine Simetryn	μg/kg μg/kg					<50 <50		<50 <50		
Terbuthylazine Terbutryn	μg/kg μg/kg					<50 <50		<50 <50		
									-	
= Exceedence of GAC for an industr	ial/commercia	l end-use								
All GACs calculated by RSK or taken from EIC/AGS/0	LAIRE Generi	c Assessment Criteria; and								

313583- Roade Bypass- Human Health Risk Assessment Soil Results Summary Table and Direct ^{3 of 3} Comparison

Sample Identity		Industrial/Commercial Screening Value (1% SOM)	WS05	WS06	WS06	WS08	WS10
Depth Strata		GACs	0.20	0.10	1.50	0.40	0.40
Determinants	Units						
Visual Fibre Screen pH	ь.		NAD	NAD 7.66	NAD	NAD 8.02	NAD 7.07
Total Organic Carbon	pH % w/w		7.55 2.56	7.66 1.29	7.75 2.03	0.65	7.97 0.44
Metals	ma/ka	640	<1	4	<1	6	6
Arsenic Cadmium	mg/kg mg/kg	640 410	0.8	0.8	<0.5	1.1	0.9
Copper	mg/kg	68000	20	13	21	13	16
Chromium Chromium (hexavalent)	mg/kg mg/kg	8600 49	25 <1	22 <1	29 <1	22 <1	28 <1
Lead	mg/kg	2300	16	17	16	14	13
Mercury Nickel	mg/kg mg/kg	1120 980	<0.17 21	<0.17 19	<0.17 3	<0.17 23	<0.17 30
Selenium	mg/kg	12000	<1	<1	<1	<1	<1
Zinc Total Petroleum Hydrocarbons Criteria Working G	mg/kg	740000	58	55	9	65	50
Ali >C5-C6	mg/kg	3200	<0.01	<0.01	<0.01	<0.01	<0.01
Ali >C6-C8 Ali >C8-C10	mg/kg mg/kg	7800 2000	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01
Ali >C10-C12	mg/kg	9700	<0.1	<0.1	<0.1	<0.1	<0.1
Ali >C12-C16	mg/kg	59000	<0.1	<0.1	<0.1	<0.1	<0.1
Ali >C16-C21 Ali >C21-C35	mg/kg mg/kg	Assess as sum below	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1
Ali >C16-C35	mg/kg	1000000	<0.1	<0.1	<0.1	<0.1	<0.1
Total Aliphatics Aro >C5-C7	mg/kg mg/kg	27	<0.1 <0.01	<0.1 <0.01	<0.1 <0.01	<0.1 <0.01	<0.1 <0.01
Aro >C7-C8	mg/kg	56000	<0.01	<0.01	<0.01	<0.01	<0.01
Aro >C8-C9 Aro >C9-C10	mg/kg mg/kg	14000 3500	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01
Aro >C10-C12	mg/kg mg/kg	16000	<0.1	<0.1	<0.1	<0.1	<0.1
Aro >C12-C16	mg/kg	36000	<0.1	<0.1	<0.1	<0.1	<0.1
Aro >C16-C21 Aro >C21-C35	mg/kg mg/kg	28000 28000	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1
Total Aromatics	mg/kg		<0.1	<0.1	<0.1	<0.1	<0.1
TPH (Ali & Aro) BTEX - Benzene	mg/kg mg/kg	27	<0.1 <0.01	<0.1 <0.01	<0.1 <0.01	<0.1 <0.01	<0.1 <0.01
BTEX - Toluene	mg/kg	56000	<0.01	<0.01	<0.01	<0.01	<0.01
BTEX - Ethyl Benzene BTEX - m & p Xylene	mg/kg mg/kg	6000 5900	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01
BTEX - 0 Xylene	mg/kg	6600	<0.01	<0.01	<0.01	<0.01	<0.01
MTBE	mg/kg	67000	<0.01	<0.01	<0.01	<0.01	<0.01
PAHs (Polycyclic Aromatic Hydrocarbons) Acenapthene	mg/kg	110000	<0.01	<0.01	<0.01	<0.01	<0.01
Acenapthylene	mg/kg	110000	<0.01	<0.01	<0.01	<0.01	<0.01
Anthracene Benzo(a)anthracene	mg/kg mg/kg	520000 170	<0.02 <0.04	<0.02 0.06	<0.02 <0.04	<0.02 <0.04	<0.02 <0.04
Benzo(a)pyrene	mg/kg	77	<0.04	0.07	< 0.04	<0.04	<0.04
Benzo(b)fluoranthene Benzo(ghi)perylene	mg/kg mg/kg	44 3900	<0.05 <0.05	0.07 <0.05	<0.05 0.08	<0.05 <0.05	<0.05 <0.05
Benzo(k)fluoranthene	mg/kg	1200	<0.07	<0.07	<0.07	<0.07	<0.07
Chrysene	mg/kg	350 3.5	<0.06	<0.06	<0.06	<0.06	<0.06
Dibenzo(ah)anthracene Fluoranthene	mg/kg mg/kg	23000	<0.04 <0.08	<0.04 0.09	<0.04 <0.08	<0.04 <0.08	<0.04 <0.08
Fluorene	mg/kg	63000	<0.01	<0.01	<0.01	<0.01	<0.01
Indeno(123-cd)pyrene Napthalene	mg/kg mg/kg	500 1800	<0.03 <0.03	0.05 <0.03	0.06 <0.03	<0.03 <0.03	<0.03 <0.03
Phenanthrene	mg/kg	22000	< 0.03	0.04	< 0.03	< 0.03	<0.03
Pyrene Total PAH	mg/kg mg/kg	54000	<0.07 <0.08	<0.07 0.41	<0.07 0.13	<0.07 <0.08	<0.07 <0.08
Organo Chlorine Pesticides (OCP) and Organo Ph		sticides (OPP)	<u> </u>	0.41	0.10	40.00	40.00
Mevinphos Dichlorvos	μg/kg μg/kg	140000					
alpha-Hexachlorocyclohexane (HCH)	μg/kg μg/kg	170000					
Diazinon	μg/kg	07000					
gamma-Hexachlorocyclohexane (HCH / Lindane) Heptachlor	μg/kg μg/kg	67000					
Aldrin	μg/kg	170000					
beta-Hexachlorocyclohexane (HCH) Methyl Parathion	μg/kg μg/kg	65000					
Malathion	μg/kg						
Fenitrothion Heptachlor Epoxide	μg/kg μg/kg						
Parathion (Ethyl Parathion)	μg/kg						
p,p-DDE p,p-DDT	μg/kg μg/kg						
p,p-Methoxychlor	μg/kg						
p,p-TDE (DDD)	μg/kg						
o,p-DDE o,p-DDT	μg/kg μg/kg						
o,p-Methoxychlor	μg/kg						
o,p-TDE (DDD) Endosulphan I	μg/kg μg/kg	5600000					
Endosulphan II	μg/kg	6300000					
Endosulphan Sulphate Endrin	μg/kg μg/kg						
Ethion	μg/kg						
Dieldrin Azinphos-methyl	μg/kg μg/kg	170000					
Azinphos-methyl Nitrogen Pests	дд/кд						
Ametryn	μg/kg						
Atraton Atrazine	μg/kg μg/kg	9300000					
Prometon	μg/kg						
Prometryn Propazine	μg/kg μg/kg						
Simazine	μg/kg						
Simetryn Terbuthylazine	μg/kg						
Terbutryn	μg/kg μg/kg						
= Exceedence of GAC for an indust	rial/commercia	I end-use					
All GACs calculated by RSK or taken from EIC/AGS/	CLAIRE Generi	c Assessment Criteria; and		1		I	

APPENDIX O COMPARISON OF WATER LABORATORY DATA TO CONTROLLED WATERS GAC

Sample Identity			Tier 2 Tar	get Conce	ntration (LTC	2)	BH01	BH02	BH04	BH05	WS02	WS10
Depth		Enviro	nmental Qu	ality Stan	dard or Best E	Equivalent	17.17	20.15	9.92	7.00	2.80	3.25
Strata		Freshwater EQS	UK/EC DWS	WHO DWS	Dutch Intervention Value	US Regional Screening Levels (RSLs) Tapwater						
Determinants pH Hardness	Units pH mg/I Ca CO3		6.5-9.5				6.76 758	6.89 434	6.94 452	7.01 502	6.86 1110	7.16 1840
Sulphate Phenols (total)	mg/l µg/l	7.7	250				471 <0.01	158 <0.01	198 <0.01	259 <0.01	788 <0.01	1520 <0.01
DOC Nitrates Metals	mg/l µg/l		50000				3.7 <0.10	3.8 0.12	4.4 2.9	2.9 <0.10	2.7 2.46	2.4 0.15
Arsenic (dissolved) Boron (dissolved)	μg/l μg/l		10 1000				<1 1400	<1 2220	<1 277	1 329	<1 67	<1 109
Cadmium (dissolved) Calcium Copper (dissolved)	μg/l mg/l μg/l		2000				<0.2 240 <1	<0.2 134 1	<0.2 164 1	<0.2 166 <1	<0.2 379 1	<0.2 564 2
Chromium (dissolved) (III + VI) Chromium (dissolved) (VI)	μg/l mg/l		50 0.05				1 <0.01	3 <0.01	10	<1 <0.01	7 <0.01	8 <0.05
Lead (dissolved) Mercury (dissolved)	μg/l μg/l		10 1				<1 <0.1	<1 <0.1	<1 <0.1	<1 <0.1	<1 <0.1	<1 <0.1
Nickel (dissolved) Selenium (dissolved) Zinc (dissolved)	μg/l μg/l μg/l		20 10 3000				8 1 31	3 2 21	8 5 27	2 <1 <1	29 24 40	3 139
Total Petroleum Hydrocarbons (BTEX - Benzene		ng Group (TPI					<1	<1	<1	<1	<1	<1
BTEX - Ethyl Benzene BTEX - Toluene BTEX - m & p Xylene	μg/l μg/l μg/l			300 700			<1 <1 <1	<1 <1 <1	<1 <1 <1	<1 <1 <1	<1 <1 <1	<1 <1 <1
BTEX - 0 Xylene Sum of xylenes	μg/l μg/l			500			<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1
MTBE Ali >C5-C6	μg/l μg/l		15	15000	9200		<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1
Ali >C6-C8 Ali >C8-C10 Ali >C10-C12	μg/l μg/l μg/l			15000 300 300			<1 <1 <5	<1 <1 <5	<1 <1 <5	<1 <1 <5	<1 <1 <5	<1 <1 <5
Ali >C12-C16 Ali >C16-C21	μg/l μg/l			300			<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5
Ali >C21-C35 Total Aliphatics Aro >C5-C7	μg/l μg/l μg/l			10			<5 <5 <1	<5 <5 <1	<5 <5 <1	<5 <5 <1	<5 <5 <1	<5 <5 <1
Aro >C7-C8 Aro >C8-C9	μg/l μg/l			700			<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1
Aro >C9-C10 Aro >C10-C12	μg/l μg/l			90			<1 <5	<1 <5	<1 <5	<1 <5	<1 <5	<1 <5
Aro >C12-C16 Aro >C16-C21 Aro >C21-C35	μg/l μg/l μg/l			90 90 90			<5 <5 <5	<5 <5 <5	<5 <5 <5	<5 <5 <5	<5 <5 <5	<5 <5 <5
Total Aromatics TPH (Ali & Aro)	μg/l μg/l			30			<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5
PAHs (Polycyclic Aromatic Hydr Acenapthene Acenapthylene	μg/l	5.8				2200	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Anthracene Benzo(a)anthracene	μg/l μg/l	0.1			0.5		<0.01 <0.01	<0.01 <0.01 <0.01	<0.01 <0.01 <0.01	<0.01 <0.01	<0.01 <0.01	<0.01
Benzo(a)pyrene Benzo(b)fluoranthene	μg/l μg/l		0.01 Sum				<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	0.05 0.04
Benzo(ghi)perylene Benzo(k)fluoranthene Chrysene	μg/l μg/l μg/l		Sum		0.2		<0.01 <0.01 <0.01	<0.01 <0.01 <0.01	<0.01 <0.01 <0.01	<0.01 <0.01 <0.01	<0.01 <0.01 <0.01	0.02 0.02 0.03
Dibenzo(ah)anthracene Fluoranthene	μg/l μg/l				0.12	1500	<0.01 <0.01	<0.01 <0.01	<0.01 0.02	<0.01 <0.01	<0.01 <0.01	<0.01 0.05
Fluorene Indeno(123-cd)pyrene	μg/l μg/l		Sum			240	<0.01 <0.01 <0.01	<0.01 <0.01 <0.01	<0.01 <0.01 <0.01	<0.01 <0.01 <0.01	<0.01 <0.01 <0.01	<0.01 0.03 <0.01
Naphthalene Phenanthrene Pyrene	μg/l μg/l μg/l				5	1100	<0.01 <0.01	<0.01 <0.01 <0.01	0.02	<0.01 <0.01	<0.01 <0.01	0.02
Total PAH (sum of Benzo(b), benzo(k), benzo(ghi) and indeno (1,2,3-cd)	μg/l		0.1*				<0.01	<0.01	0.06	<0.01	<0.01	0.33
Semi-Volatile Organic Compount 2,4,5-Trichlorophenol	μg/l						<2 <2	<2 <2	<1 <1	<1 <1		
2,4,6-Trichlorophenol 2,4-Dichlorophenol 2,4-Dimethylphenol	μg/l μg/l	4.2					<2 <2 <2	<2 <2 <2	<1 <1	<1 <1 <1		
2,4-Dinitrotoluene 2,6-Dinitrotoluene	μg/l μg/l μg/l						<2 <2 <2	<2 <2 <2	<1 <1	<1 <1		
2-Chloronaphthalene 2-Chlorophenol	μg/l μg/l	50					<2 <2	<2 <2	<1 <1	<1		
2-Methylnaphthalene 2-Methylphenol	μg/l μg/l	00					<2 <2	<2 <2	<1 <1	<1 <1		
2-Nitrophenol 4-Bromophenyl phenyl ether	μg/l μg/l						<2 <2	<2 <2	<1 <1	<1 <1		
4-Chloro-3-methylphenol Bis(2-chloroisopropyl)ether	μg/l μg/l	40					<2 <2	<2 <2	<1 <1	<1 <1		
4-Methylphenol 4-Nitrophenol	μg/l μg/l						<2 <2	<2 <2	<1 <1	<1 <1		
Bis(2-chloroethyl)ether Bis(2-chloroethoxy)methane	μg/l μg/l						<2 <2	<2 <2	<1 <1	<1 <1		
Bis(2-ethylhexyl)phthalate Butylbenzyl phthalate SVOC	μg/l μg/l	7.5	8				<20 <2	<20 <2	<10 <1	<10 <1		
Carbazole Dibenzofuran	μg/l μg/l						<2 <2	<2 <2	<1 <1	<1 <1		
n-Dibutylphthalate n-Dioctylphthalate	μg/l μg/l	8					<2 <20	<2 <20	<1 <10	<1 <10		
n-Nitroso-n-dipropylamine Diethyl phthalate	μg/l μg/l	200					<2 <2	<2 <2	<1 <1	<1 <1		
Dimethyl phthalate Hexachlorobenzene	μg/l μg/l	800 0.05					<2 <2	<2 <2	<1 <1	<1 <1		
Pentachlorophenol Phenol SVOC Nitrobenzene	μg/l μg/l	7.7	9				<2 <2	<2 <2	<1 <1	<1 <1		
Nitrobenzene Isophorone Heyachlorocyclopentadiene	μg/l μg/l						<2 <2	<2 <2	<1 <1	<1 <1		
Hexachlorocyclopentadiene Phenanthrene SVOC Perylene	μg/l μg/l μg/l				5		<2 <2 <2	<2 <2 <2	<1 <1 <1	<1 <1 <1		
Volatile Organic Compounds (Volichlorodifluoromethane		virolab Data)					<2	<2	<1	<1		
Chloromethane Vinyl Chloride	μg/l μg/l		0.5			190	<10 <1	<10 <1	<10 <1	<10 <1		
Bromomethane Chloroethane Trichlorofluoromethane	μg/l μg/l μg/l						<1 <1 <1	<1 <1 <1	<1 <1 <1	<1 <1 <1		
trans-1,2-Dichloroethylene :- {tran- Dichloromethane	μg/l μg/l		20	20		110	<1 <5	<1 <5	<1 <5	<1 <5		
Carbon Disulphide 1,1-Dichloroethylene :- {1,1-Dichloroethylene }	μg/l μg/l μg/l			30	900		<1 <1 <1	<1 <1 <1	<1 <1 <1	<1 <1 <1		
cis-1,2-Dichloroethylene :- {cis-1,2 Bromochloromethane	μg/l μg/l			50	300		<1 <5	<1 <5	<1 <5	<1 <5		
Chloroform :- {Trichloromethane} 2,2-Dichloropropane	μg/l μg/l		100	300	80		<1 <1	<1 <1	<1 <1	<1 <1		
1,2-Dichloroethane 1,1,1-Trichloroethane 1,1-Dichloropropylene :- {1,1-Dich	μg/l μg/l μg/l	100	3				<2 <1 <1	<2 <1 <1	<2 <1 <1	<2 <1 <1		
Benzene Carbon tetrachloride :- {Tetrachlor	μg/l μg/l		1 3				<1 <1	<1 <1	<1 <1	<1 <1		
Dibromomethane 1,2-Dichloropropane Bromodichloromethane	μg/l μg/l			40 60		8.2	<1 <1 <10	<1 <1 <10	<1 <1 <10	<1 <1 <10		
Trichloroethylene :- {Trichloroethe cis-1,3-Dichloropropylene :- {cis-1	μg/l		10	30		40	<1 <1	<1 <1	<1 <1	<1 <1		
trans-1,3-Dichloropropylene :- {tra 1,1,2-Trichloroethane	μg/l μg/l	7.		70.5		40	<1 <1	<1 <1	<1 <1	<1 <1		
Toluene :- {Methylbenzene} 1,3-Dichloropropane Dibromochloromethane	μg/l μg/l μg/l	74		700 100	80		<1 <1 <3	<1 <1 <3	<1 <1 <3	<1 <1 <3		
1,2-Dibromoethane Tetrachloroethylene :- {Perchloroe	μg/l μg/l		10	0.4			<1 <1	<1 <1	<1 <1	<1 <1		
1,1,1,2-Tetrachloroethane Chlorobenzene Ethylbenzene	µg/l µg/l	Sum		10		1100	<1 <1	<1 <1 <1	<1 <1	<1 <1		
Laryiderizerie	μg/l			300			<1	<1	<1	<1		

Sample Identity			Tier 2 Tarç	get Conce	entration (LTC:	2)	BH01	BH02	BH04	BH05	WS02	WS10
Depth							17.17	20.15	9.92	7.00	2.80	3.25
		Enviror	nmental Qu	ality Stan	dard or Best E	quivalent						
Strata		Freshwater EQS	UK/EC DWS	WHO DWS	Dutch Intervention Value	US Regional Screening Levels (RSLs) - Tapwater						
Determinants	Units											
DiMeBenzene 13+14 (m&p Xylene	µg/l	Sum					<1	<1	<1	<1		
Bromoform :- {Tribromomethane}	μg/l			100			<1	<1	<1	<1		
Styrene :- {Vinylbenzene}	μg/l			20			<1	<1	<1	<1		
1,1,2,2-Tetrachloroethane	μg/l					150	<1	<1	<1	<1		
1,2-Dimethylbenzene :- {o-Xylene}	μg/l	Sum					<1	<1	<1	<1		
1,2,3-Trichloropropane	μg/l					0.62	<1	<1	<1	<1		
Isopropylbenzene	μg/l						<1	<1	<1	<1		
Bromobenzene	μg/l					88	<1	<1	<1	<1		
2-Chlorotoluene :- {1-Chloro-2-me	μg/l					730	<1	<1	<1	<1		
n-Propylbenzene :- {1-phenylpropa	μg/l					1300	<1	<1	<1	<1		
4-Chlorotoluene :- {1-Chloro-4-me	μg/l						<1	<1	<1	<1		
1,2,4-Trimethylbenzene	μg/l					15	<1	<1	<1	<1		
4-Isopropyltoluene :- {4-methyl-Iso	μg/l						<1	<1	<1	<1		
1,3,5-Trimethylbenzene :- {Mesityl	μg/l					370	<1	<1	<1	<1		
1,2-Dichlorobenzene	μg/l			1000			<1	<1	<1	<1		
1,4-Dichlorobenzene	μg/l			300			<1	<1	<1	<1		
sec-Butylbenzene :- {1-Methylprop	μg/l						<1	<1	<1	<1		
tert-Butylbenzene :- {(1,1-Dimethy	μg/l						<2	<2	<2	<2		
1,3-Dichlorobenzene	μg/l						<1	<1	<1	<1		
n-ButylBenzene :- {1-Phenylbutan	μg/l						<1	<1	<1	<1		
1,2-Dibromo-3-chloropropane	μg/l			1			<2	<2	<2	<2		
1,2,4-Trichlorobenzene	μg/l			5 to 30			<3	<3	<3	<3		
1,2,3-Trichlorobenzene	μg/l			10			<3	<3	<3	<3		
Hexachlorobutadiene	μg/l			0.6			<1	<1	<1	<1		

APPENDIX P CERTIFICATES OF GEOTECHNICAL ANALYSIS

TESTING VERIFICATION CERTIFICATE

1774

The test results included in this report are certified as:-

ISSUE STATUS: FINAL

In accordance with the Structural Soils Ltd Laboratory Quality Management System, results sheets and summaries of results issued by the laboratory are checked by an approved signatory. The integrity of the test data and results are ensured by control of the computer system employed by the laboratory as part of the Software Verification Program as detailed in the Laboratory Quality Manual.

This testing verification certificate covers all testing compiled on or before the following datetime: **02/11/2017 15:24:39**.

Testing reported after this date is not covered by this Verification Certificate.

M. DA

Approved Signatory

Mark Athorne (Laboratory Manager)

(Head Office)
Bristol Laboratory
Unit 1A, Princess Street
Bedminster
Bristol
BS3 4AG

Castleford Laboratory
The Potteries, Pottery Street
Castleford
West Yorkshire
WF10 1NJ

Hemel Laboratory 18 Frogmore Road Hemel Hempstead Hertfordshire HP3 9RT Tonbridge Laboratory
Anerley Court, Half Moon Lane
Hildenborough
Tonbridge
TN11 9HU

GINT_LIBRARY V8 06.GLB LibVersion: v8 06 018 PriVersion: v8 06 - Core+Geotech Lab-Castleford - 008 | GrfcText L - LAB VERIFICATION REPORT - V02 - A4P | 782814 - M1 JUNCTION 15 ROADE BYPASS.GPJ - v8 06. Structural Soils Lid, Branch Office - Castleford: The Potteries, Potteries, Potterie, Castleford, West Yorkshire, WF10 1NJ. Tel: 01977-552256, Fax: 01977-552299, Web: www.soils.co.uk, Email: ask@soils.co.uk, | 02/11/17 - 15:25 | MAA1 |

STRUCTURAL SOILS LTD

Contract:

Job No:

M1 Junction 15 Roade Bypass

STRUCTURAL SOILS LTD

TEST REPORT

Report No. 782814 R1

1//4

Date 02-November-2017 Contract M1 Junction 15 Roade Bypass

Client RSK Environment Ltd

Address Spring Lodge

172 Chester Road

Helsby

Cheshire WA6 0AR

For the Attention of	Michael Lawson		
	00/00/00/-	CI: LD f	242522
Samples submitted by client	29/09/2017	Client Reference	313583
Testing Started	02/10/2017	Client Order No.	
Testing Completed	02/11/2017	Instruction Type	Written

Ukas Accredited Tests Underatken

Moisture Content (oven drying method) BS1377:Part 2:1990,clause 3.2 (superseded)**

Liquid Limit (one point method) BS1377:Part 2:1990,clause 4.4

Plastic Limit BS1377:Part 2:1990,clause 5.3

Plasticity Index Derivation BS1377:Part 2:1990,clause 5.4

Particle Size Distribution wet sieve method BS1377:Part 2:1990,clause 9.2

Dry density/moisture content relationship 4.5kg rammer method BS1377:Part 4:1990

clause 3.5/3.6

Non Ukas Accredited Tests Undertaken

Particle Size Distribution sedimentation hydrometer method BS1377:Part 2: 1990,clause 9.5

Tests Undertaken at our Bristol Laboratory

Summary of Water Content Tests ISRM 2007

Point Load ISRM 2007

Unconfined Compressive Strength (in house method based on ISRM 2007)

Permeability (triaxial cell method) BS1377:Part 6:1990,clause 6 Sulphate content (acid extract) BS1377:Part 3:1990,clause 5.2 Sulphate content (water extract) BS1377:Part 3:1990,clause 5.3

pH Value BS1377:Part 3:1990,clause 9.5

Please Note: Remaining samples will be retained for a period of one month from today and will then be disposed of.

Test were undertaken on samples 'as received' unless otherwise stated.

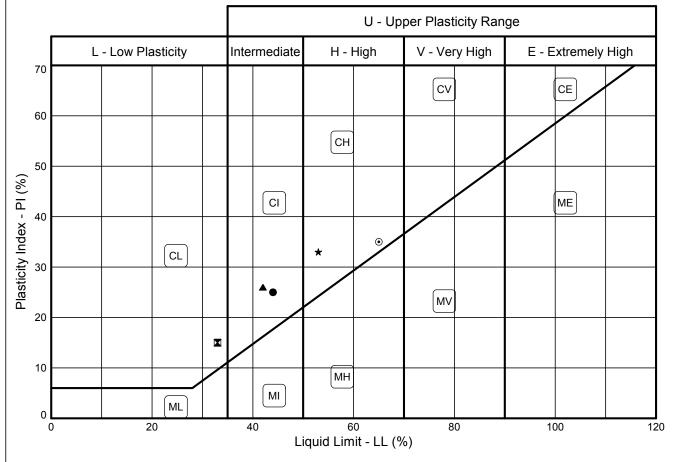
Opinions and interpretations expressed in this report are outside the scope of accreditation for this laboratory.

Structural Soils Ltd, The Potteries, Pottery Street, Castleford, WF10 1NJ Tel.01977 552255. E-mail mark.athorne@soils.co.uk

^{*} This clause of BS1377 is no longer the most up to date method due to the publication of ISO17892

SUMMARY OF SOIL CLASSIFICATION TESTS

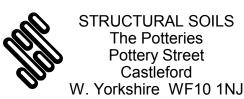
In accordance with clauses 3.2,4.3,4.4,5.3,5.4,7.2,8.2,8.3 of BS1377:Part 2:1990


Exploratory Position ID	Sample Ref	Sample Type	Depth (m)	Moisture Content %	Liquid Limit %	Plastic Limit %	Plasticity Index	% <425um	Description of Sample
TP12	1	В	1.00	10					Light brown very sandy slightly gravelly CLAY
TP14	1	В	0.50	23					Brown slightly sandy slightly gravelly CLAY
TP16	1	В	0.60	11	44	19	25	67	Brown slightly sandy slightly gravelly CLAY
TP17	1	В	0.50	17	33	18	15	66	Light brown slightly sandy gravelly CLAY
TP20	1	D	0.50	14	42	16	26	72	Brown slightly sandy slightly gravelly CLAY
WS01	1	В	0.90	16	53	20	33	89	Dark brown slightly sandy slightly gravelly CLAY
WS03	1	В	0.20	16					Light brown sandy slightly gravelly CLAY
WS05	1	В	0.80	27	65	30	35	91	Grey sandy gravelly CLAY

Contract: Contract Ref:

M1 Junction 15 Roade Bypass

	Sample	Identificat	entification		Preparation	Preparation MC LL			PI	<425um	
	Exploratory Position ID	Sample	Depth (m)	Method #	Method +	%	%	%	%	%	Lab location
•	TP16	1B	0.60	3.2/4.4/5.3/5.4	4.2.4	11	44	19	25	67	С
	TP17	1B	0.50	3.2/4.4/5.3/5.4	4.2.4	17	33	18	15	66	С
	TP20	1D	0.50	3.2/4.4/5.3/5.4	4.2.4	14	42	16	26	72	С
*	WS01	1B	0.90	3.2/4.4/5.3/5.4	4.2.4	16	53	20	33	89	С
•	WS05	1B	0.80	3.2/4.4/5.3/5.4	4.2.4	27	65	30	35	91	С

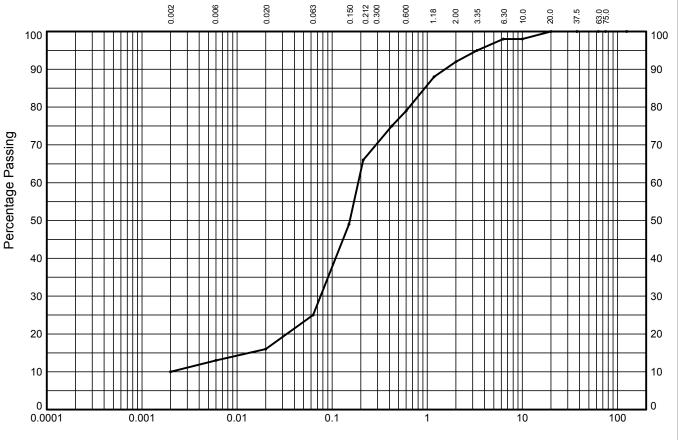

Tested in accordance with the following clauses of BS1377-2:1990.

- 3.2 Moisture Content
- 4.3 Cone Penetrometer Method
- 4.4 One Point Cone Penetrometer Method
- 4.6 One Point Casagrande Method
- 5.3 Plastic Limit Method 5.4 Plasticity Index

- + Tested in accordance with the following clauses of BS1377-2:1990.
- 4.2.3 Natural State
- 4.2.4 Wet Sieved

Key: * = Non-standard test, NP = Non plastic.

Lab location: B = Bristol (BS3 4AG), C = Castleford (WF10 1NJ), H = Hemel Hempstead (HP3 9RT), T = Tonbridge (TN11 9HU)


Compiled By					
M. Fisher.	N	MAUREEN FISHER	02/11/17		
Contract	C	Contract Ref:			

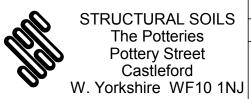
M1 Junction 15 Roade Bypass

782814

In accordance with clauses 9.2, 9.5 of BS1377:Part 2:1990

Trial Pit: TP12 Sample Ref: 1 Sample Type: B Depth (m): 1.00

CLAY	fine	medium	coarse	fine	medium	coarse	fine	medium	coarse	COBBLES
CLAT		SILT			SAND		·	GRAVEL		COBBLES

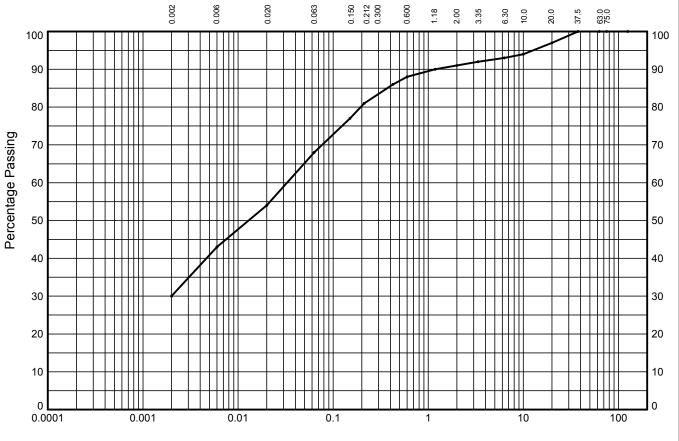

Test Sieve (mm)	Percent Passing (%)
125.0 75.0 63.0 37.5 20.0 10.0 6.30 3.35 2.00 1.18 0.600 0.425 0.212 0.150 0.063	100 100 100 100 100 98 98 95 92 88 79 75 66 49 25

Particle Diameter (mm)	Percent Passing (%)						
0.02	16						
0.006	13						
0.002	10						
Sedimentation sample was not pre-treated							
p. 5 5 5 5 5 5							

Soil Fraction	Sieve Percentage (%)
GRAVEL	8
SAND	67
SILT	15
CLAY	10

Soil Description:

Light brown very sandy slightly gravelly CLAY


Compiled By				
C Cole	CATHERINE COLE	02/11/17		
Contract	Contract Ref:			

M1 Junction 15 Roade Bypass

782814

In accordance with clauses 9.2, 9.5 of BS1377:Part 2:1990

Trial Pit: TP14 Sample Ref: 1 Sample Type: B Depth (m): 0.50

Particle Size (mm)

CLAY	fine	medium	coarse	fine	medium	coarse	fine	medium	coarse	COBBLES
CLAT		SILT			SAND		·	GRAVEL		COBBLES

Test Sieve (mm)	Percent Passing (%)
125.0 75.0 63.0 37.5 20.0 10.0 6.30 3.35 2.00 1.18 0.600 0.425 0.212 0.150 0.063	100 100 100 100 97 94 93 92 91 90 88 86 81 77 68

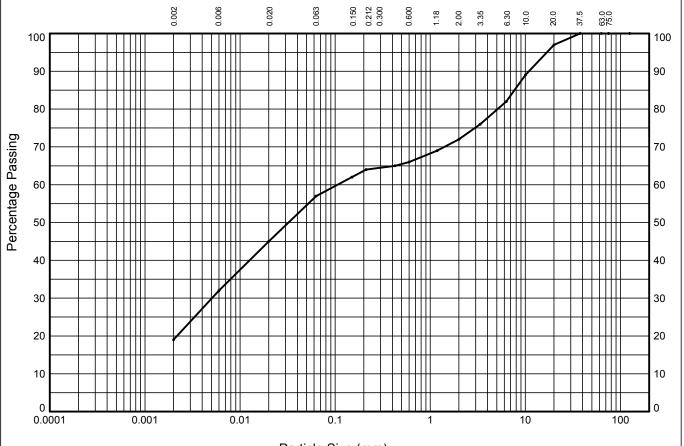
Particle Diameter (mm)	Percent Passing (%)				
0.02	54				
0.006	43				
0.002	30				
Sedimentation sample was not pre-treated					

Soil Fraction	Sieve Percentage (%)
GRAVEL	9
SAND	23
SILT	38
CLAY	30

Soil Description:

Brown slightly sandy slightly gravelly CLAY

STRUCTURAL SOILS
The Potteries
Pottery Street
Castleford
W. Yorkshire WF10 1NJ


Compiled By				
C Càc CATHERINE COLE				
Contract	Contract Ref:			

M1 Junction 15 Roade Bypass

782814

In accordance with clauses 9.2, 9.5 of BS1377:Part 2:1990

Trial Pit: TP16 Sample Ref: 1 Sample Type: B Depth (m): 0.60

Particle Size ((mm)
-----------------	------

CLAV	fine	medium	coarse	fine	medium	coarse	fine	medium	coarse	COBBLES
CLAT		SILT			SAND		(GRAVEL		COBBLES

Test Sieve (mm)	Percent Passing (%)
125.0 75.0 63.0 37.5 20.0 10.0 6.30 3.35 2.00 1.18 0.600 0.425 0.212 0.150 0.063	100 100 100 100 97 89 82 76 72 69 66 65 64 62 57

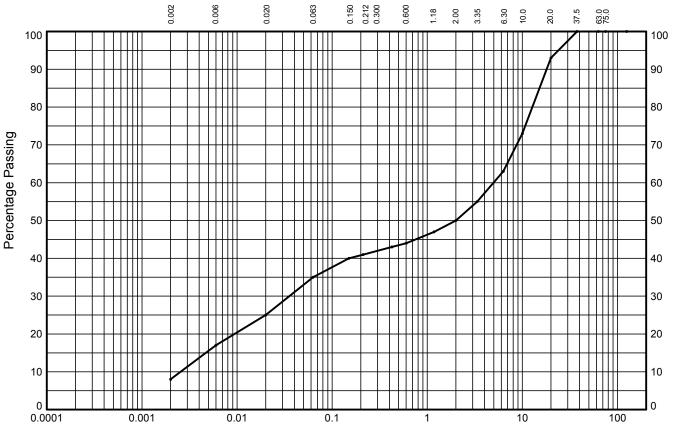
Particle Diameter (mm)	Percent Passing (%)					
0.02	45					
0.006	32					
0.002	19					
Sedimentation sample was not pre-treated						

Soil Fraction	Sieve Percentage (%)
GRAVEL	28
SAND	15
SILT	38
CLAY	19

Soil Description:

Brown slightly sandy slightly gravelly CLAY

STRUCTURAL SOILS
The Potteries
Pottery Street
Castleford
W. Yorkshire WF10 1NJ


Compiled By				
C Càc CATHERINE COLE				
Contract	Contract Ref:			

M1 Junction 15 Roade Bypass

782814

In accordance with clauses 9.2, 9.5 of BS1377:Part 2:1990

Trial Pit: TP17 Sample Ref: 1 Sample Type: B Depth (m): 0.50

Particle Siz	ze (mm)
--------------	---------

CLAY	fine	medium	coarse	fine	medium	coarse	fine	medium	coarse	COBBLES
CLAT		SILT			SAND		·	GRAVEL		COBBLES

Test Sieve (mm)	Percent Passing (%)
125.0 75.0 63.0 37.5 20.0 10.0 6.30 3.35 2.00 1.18 0.600 0.425 0.212 0.150 0.063	100 100 100 100 93 73 63 55 50 47 44 43 41 40 35

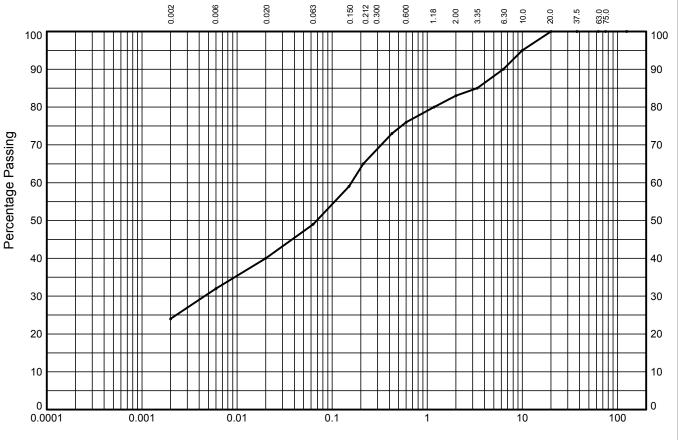
Particle Diameter (mm)	Percent Passing (%)				
0.02	25				
0.006	17				
0.002	8				
Sedimentation sample was not pre-treated					

Soil Fraction	Sieve Percentage (%)
GRAVEL	50
SAND	15
SILT	27
CLAY	8

Soil Description:

Light brown slightly sandy gravelly CLAY

STRUCTURAL SOILS
The Potteries
Pottery Street
Castleford
W. Yorkshire WF10 1NJ


Compiled By			
M. Fishe.	02/11/17		
Contract	Contract Ref		

M1 Junction 15 Roade Bypass

782814

In accordance with clauses 9.2, 9.5 of BS1377:Part 2:1990

Trial Pit: TP20 Sample Ref: 1 Sample Type: D Depth (m): 0.50

Particle Siz	ze (mm)
--------------	---------

CLAY	fine	medium	coarse	fine	medium	coarse	fine	medium	coarse	COBBLES
CLAT		SILT			SAND		·	GRAVEL		COBBLES

Test Sieve (mm)	Percent Passing (%)
125.0 75.0 63.0 37.5 20.0 10.0 6.30 3.35 2.00 1.18 0.600 0.425 0.212 0.150 0.063	100 100 100 100 95 90 85 83 80 76 73 65 59

Percent Passing (%)					
40					
32					
24					
Sedimentation sample was not pre-treated					

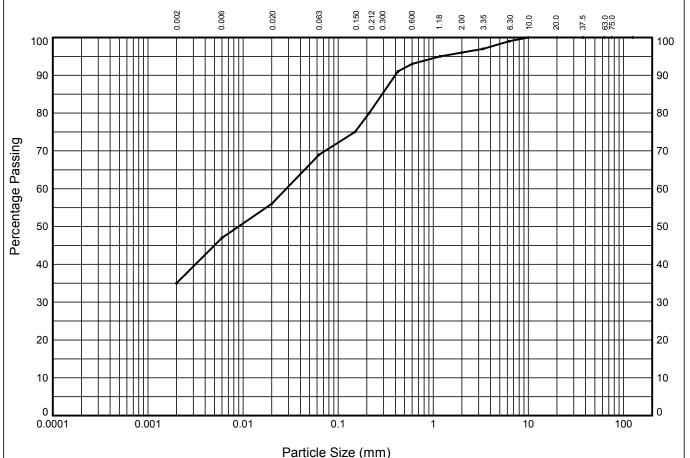
Soil Fraction	Sieve Percentage (%)
GRAVEL	17
SAND	34
SILT	25
CLAY	24

Soil Description:

Brown slightly sandy slightly gravelly CLAY

STRUCTURAL SOILS
The Potteries
Pottery Street
Castleford
W. Yorkshire WF10 1NJ

Compiled By			
M. Fisher.	02/11/17		
Contract	Contract Ref:		


M1 Junction 15 Roade Bypass

782814

AG

In accordance with clauses 9.2, 9.5 of BS1377:Part 2:1990

Window Sample: WS01 Sample Ref: 1 Sample Type: B Depth (m): 0.90

	fine	madium	aaaraa	£:	 	
	`	,				

CLAV	fine	medium	coarse	fine	medium	coarse	fine	medium	coarse	COBBLES
CLAT		SILT			SAND		(GRAVEL		COBBLES

Test Sieve (mm)	Percent Passing (%)
125.0 75.0 63.0 37.5 20.0 10.0 6.30 3.35 2.00 1.18 0.600 0.425 0.212 0.150 0.063	100 100 100 100 100 100 99 97 96 95 93 91 80 75 69

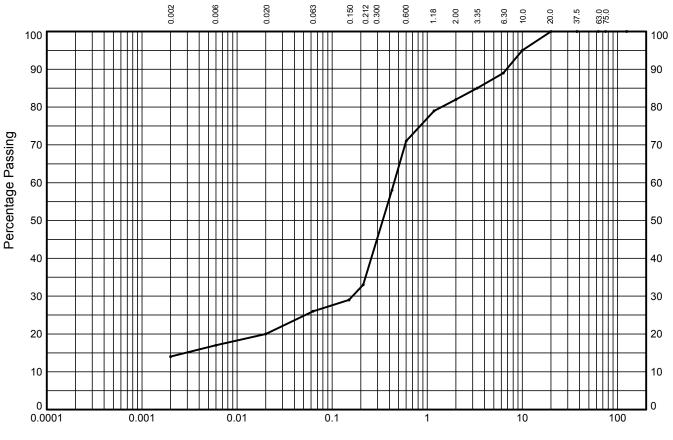
	Particle Diameter (mm)	Percent Passing (%)
	0.02	56
	0.006	47
	0.002	35
	Sedimentation s	sample was not eated
•		

Soil Fraction	Sieve Percentage (%)
GRAVEL	4
SAND	27
SILT	34
CLAY	35

Soil Description:

Dark brown slightly sandy slightly gravelly CLAY

STRUCTURAL SOILS
The Potteries
Pottery Street
Castleford
W. Yorkshire WF10 1NJ


Compiled By			
C Cole	CATHERINE COLE	02/11/17	
Contract	Contract Ref:		

M1 Junction 15 Roade Bypass

782814

In accordance with clauses 9.2, 9.5 of BS1377:Part 2:1990

Window Sample: WS03 Sample Ref: Sample Type: Depth (m): 0.20

CLAY	fine	medium	coarse	fine	medium	coarse	fine	medium	coarse	COBBLES
		SILT			SAND		·	GRAVEL		COBBLES

Test Sieve (mm)	Percent Passing (%)
125.0 75.0 63.0 37.5 20.0 10.0 6.30 3.35 2.00 1.18 0.600 0.425 0.212 0.150 0.063	100 100 100 100 100 95 89 85 82 79 71 58 33 29 26

Particle Diameter (mm)	Percent Passing (%)		
0.02	20		
0.006	17		
0.002	14		
Sedimentation sample was not pre-treated			

Soil Fraction	Sieve Percentage (%)
GRAVEL	18
SAND	56
SILT	12
CLAY	14

Soil Description:

Light brown sandy slightly gravelly CLAY

STRUCTURAL SOILS The Potteries **Pottery Street** Castleford W. Yorkshire WF10 1NJ


Compiled By			
C Cole	CATHERINE COLE	02/11/17	
Contract	Contract Ref:		

M1 Junction 15 Roade Bypass

DRY DENSITY / MOISTURE CONTENT RELATIONSHIP TEST In accordance with clauses 3.3,3.4,3.5,3.6,3.7 of BS1377:Part 4:1990

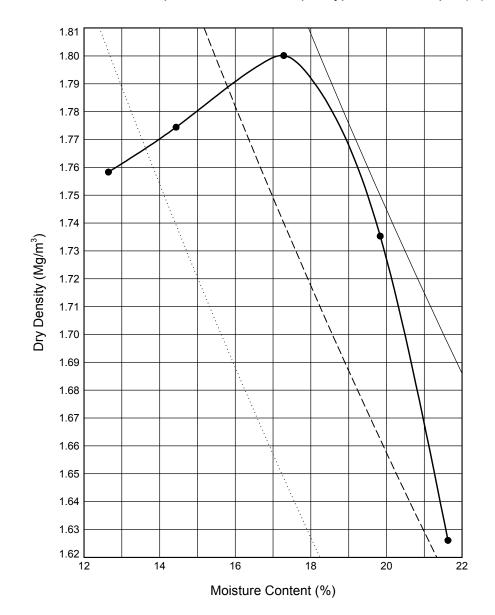
Trial Pit: TP12 Sample Ref: Sample Type: В Depth (m): 1.00

Initial Sample Condition	าร	Test Details	Test Results	
Initial Moisture Content (%)	: 16	Compaction Type : Heavy	Maximum Dry Density (Mg/m³) : 1.82	
% Retained on 37.5mm BS Sieve	: 0	Mass of Rammer (kg): 4.5	Optimum Moisture Content (%) : 13	
% Retained on 20.0mm BS Sieve	: 0	Type of Mould : Proctor	Method Used: Clause 3.5	
Particle Density - assumed (Mg/m³)	: 2.65		Remarks:	
Size of Soil Pieces	: <20mm	Separate samples were used.		
Sample Description			Key to Air Voids Lines	
Light brown very sandy slightly gravelly CLAY			0%	

In.	STRUCTURAL SOILS The Potteries			
Thy)	Pottery Street			
	Castleford			
9	W. Yorkshire WF10 1NJ			

Compiled By		
M. AM	MARK ATHORNE	02/11/17
0 1 1	0 1 10 1	

Contract


Contract Ref:

M1 Junction 15 Roade Bypass

DRY DENSITY / MOISTURE CONTENT RELATIONSHIP TEST In accordance with clauses 3.3,3.4,3.5,3.6,3.7 of BS1377:Part 4:1990

Sample Type: Trial Pit: TP14 В Depth (m): Sample Ref: 0.50

Initial Sample Condition	าร	Test Details	Test Results		
Initial Moisture Content (%) : 13		Compaction Type : Heavy	Maximum Dry Density (Mg/m³) : 1.80		
% Retained on 37.5mm BS Sieve	: 0	Mass of Rammer (kg): 4.5	Optimum Moisture Content (%) : 17		
% Retained on 20.0mm BS Sieve	: 2	Type of Mould : Proctor	Method Used: Clause 3.5		
Particle Density - assumed (Mg/m³)	: 2.68		Remarks:		
Size of Soil Pieces : <20mm Separate samples were used.					
Samp	Key to Air Voids Lines				
Brown slightly sandy slightly g	0%				

In.	STRUCTURAL SOILS The Potteries					
Thy)	Pottery Street					
	Castleford					
9	W. Yorkshire WF10 1NJ					

Compiled By					
M. AM	MARK ATHORNE	02/11/17			
0 1 1	0 1 15 (

Contract

Contract Ref:

M1 Junction 15 Roade Bypass

SUMMARY OF WATER CONTENT TESTS RT08 Water Content of Rock (in accordance with ISRM 2007)

Exploratory Position ID	Sample Ref	Depth (m)	Sample Type	(%)	Lal
				Water Content	P

Lab location: B = Bristol (BS3 4AG), C = Castleford (WF10 1NJ), H = Hemel Hempstead (HP3 9RT), T = Tonbridge (TN11 9HU)

STRUCTURAL SOILS 1a Princess Street **Bedminster** Bristol BS3 4AG

Compiled By

EMY HOWARD

Contract Ref:

01/11/17

Date

Contract:

Roade Bypass 313583

DETERMINATION OF POINT LOAD STRENGTH

RT03 Point Load Testing (in accordance with ISRM 2007)

Exploratory Position ID	Depth (m)	Type of Test	Width or Length (W or L) (mm)	Platen Separation (D) (mm)	Failure Load (P) (kN)	Equivalent Diameter (D _e) (mm)	Point Load (I _s) (MN/m²)	Size Factor (F)	Point Load Index (I _{s(50)}) (MN/m²)	Water Content (%)	Rock Type	Lab location
BH01	9.00	D	50	90	0.260	90	0.03	1.30	0.04 (🗸)	27	MUDSTONE	В
BH01	9.00	Α	90	55	0.200	79	0.03	1.23	0.04 (🗸)	27	MUDSTONE	В
			 Results						Kev			

Results 8 4

 $I_s(50)$ Mean Axial tests = **0.04** MN/m² I_s(50) Mean Diametral tests = **0.04** MN/m²

 $I_a(50)$ Strength Anisotropy Index = **1.07** (calculated from highest and lowest diametral and axial $I_s(50)$

Note: Size Correction Factor (F) calculated using $F = (D_a/50)^{0.45}$ (where D_a is equivalent core diameter).

<u>Key</u>
<u>Type of Test column:</u>, A = Axial, D = Diametral, I = Irregular, B = Block, L = Parallel, P = Perpendicular,

NSI denotes Non-standard Test. Point Load Index column: (\checkmark) = included in mean calculations, (χ) = excluded from mean calculations Lab location: B = Bristol (BS3 4AG), C = Castleford (WF10 1NJ), H = Hemel Hempstead (HP3 9RT), T = Tonbridge (TN11 9HU)

STRUCTURAL SOILS 1a Princess Street Bedminster Bristol BS3 4AG

Compi	Date	Contract Ref:	
CO.	EMY HOWARD	01.11.17	
Contract:			

782814

Roade Bypass 313583

RT03 Point Load Testing (in accordance with ISRM 2007)

Exploratory Position ID	Depth (m)	Type of Test	Width or Length (W or L) (mm)	Platen Separation (D) (mm)	Failure Load (P) (kN)	Equivalent Diameter (D _e) (mm)	Point Load (I _s) (MN/m²)	Size Factor (F)	Point Load Index (I _{s(50)}) (MN/m²)	Water Content (%)	Rock Type	Lab location
BH01	11.83	D	80	87	2.095	87	0.28	1.28	0.36 (🗸)	9.5	LIMESTONE	В
BH01	11.83	Α	87	88	1.345	99	0.14	1.36	0.19 (🗸)	9.5	LIMESTONE	В
			Results						Kev			

Results 8 4

 $I_s(50)$ Mean Axial tests = **0.19** MN/m²

I_s(50) Mean Diametral tests = **0.36** MN/m²

 $I_a(50)$ Strength Anisotropy Index = **1.9** (calculated from highest and lowest diametral and axial $I_s(50)$

Note: Size Correction Factor (F) calculated using $F = (D_e/50)^{0.45}$ (where D_e is equivalent core diameter).

<u>Key</u>
<u>Type of Test column:</u>, A = Axial, D = Diametral, I = Irregular, B = Block, L = Parallel, P = Perpendicular,

NSI denotes Non-standard Test. Point Load Index column: (\checkmark) = included in mean calculations, (χ) = excluded from mean calculations Lab location: B = Bristol (BS3 4AG), C = Castleford (WF10 1NJ), H = Hemel Hempstead (HP3 9RT), T = Tonbridge (TN11 9HU)

STRUCTURAL SOILS 1a Princess Street Bedminster Bristol BS3 4AG

Co	Compiled By					
Co.	EMY HOWARD	01.11.17				
Contract:						

782814 Roade Bypass 313583

RT03 Point Load Testing (in accordance with ISRM 2007)

Exploratory Position ID	Depth (m)	Type of Test	Width or Length (W or L) (mm)	Platen Separation (D) (mm)	Failure Load (P) (kN)	Equivalent Diameter (D _e) (mm)	Point Load (I _s) (MN/m²)	Size Factor (F)	Point Load Index (I _{s(50)}) (MN/m²)	Water Content (%)	Rock Type	Lab location
BH01	14.80	D	105	88	5.130	88	0.66	1.29	0.85 (✔)	4.7	LIMESTONE	В
BH01	14.80	Α	88	50	10.710	75	1.91	1.20	2.29 (✔)	4.7	LIMESTONE	В
			Results						Kev			

Results 8 4

 $I_s(50)$ Mean Axial tests = 2.29 MN/m²

I_s(50) Mean Diametral tests = **0.85** MN/m²

 $I_a(50)$ Strength Anisotropy Index = **2.68** (calculated from highest and lowest diametral and axial $I_s(50)$

Note: Size Correction Factor (F) calculated using $F = (D_a/50)^{0.45}$ (where D_a is equivalent core diameter).

<u>Key</u>
<u>Type of Test column:</u>, A = Axial, D = Diametral, I = Irregular, B = Block, L = Parallel, P = Perpendicular,

NSI denotes Non-standard Test. Point Load Index column: (\checkmark) = included in mean calculations, (χ) = excluded from mean calculations Lab location: B = Bristol (BS3 4AG), C = Castleford (WF10 1NJ), H = Hemel Hempstead (HP3 9RT), T = Tonbridge (TN11 9HU)

STRUCTURAL SOILS 1a Princess Street Bedminster Bristol BS3 4AG

		Compi	iled By	Date	Contract Ref:
	CU.		EMY HOWARD	01.11.17	
Contract:		Ro	ado Rynaes 313583		
		Ro	ade Bypass 313583		

RT03 Point Load Testing (in accordance with ISRM 2007)

16.70		(mm)	Separation (D) (mm)	(P) (kN)	Diameter (D _e) (mm)	Load (I _s) (MN/m²)	Size Factor (F)	Index (I _{s(50)}) (MN/m²)	Water Content (%)	Rock Type	Lab location
10.70	D	65	88	1.315	88	0.17	1.29	0.22 (✔)	7.3	LIMESTONE	В
16.70	Α	88	68	0.980	87	0.13	1.28	0.17 (🗸)	7.3	LIMESTONE	В
	16.70		Results	Results	Results						Results Key

 $I_s(50)$ Mean Axial tests = **0.17** MN/m² I_s(50) Mean Diametral tests = **0.22** MN/m²

 $I_a(50)$ Strength Anisotropy Index = **1.33** (calculated from highest and lowest diametral and axial $I_s(50)$

Note: Size Correction Factor (F) calculated using $F = (D_e/50)^{0.45}$ (where D_e is equivalent core diameter).

<u>Key</u>
<u>Type of Test column:</u>, A = Axial, D = Diametral, I = Irregular, B = Block, L = Parallel, P = Perpendicular,

NSI denotes Non-standard Test. Point Load Index column: (\checkmark) = included in mean calculations, (χ) = excluded from mean calculations Lab location: B = Bristol (BS3 4AG), C = Castleford (WF10 1NJ), H = Hemel Hempstead (HP3 9RT), T = Tonbridge (TN11 9HU)

STRUCTURAL SOILS 1a Princess Street Bedminster Bristol BS3 4AG

Contract Ref: Compiled By Date **EMY HOWARD** 01.11.17 Contract:

Roade Bypass 313583

RT03 Point Load Testing (in accordance with ISRM 2007)

Exploratory Position ID	Depth (m)	Type of Test	Width or Length (W or L) (mm)	Platen Separation (D) (mm)	Failure Load (P) (kN)	Equivalent Diameter (D _e) (mm)	Point Load (I _s) (MN/m²)	Size Factor (F)	Point Load Index (I _{s(50)}) (MN/m²)	Water Content (%)	Rock Type	Lab location
BH01	23.80	D	95	87	15.510	87	2.05	1.28	2.63 (🗸)	1.7	LIMESTONE	В
BH01	23.80	Α	87	84	24.815	96	2.67	1.34	3.58 (✔)	1.7	LIMESTONE	В
												\dashv
												+
			Results						Kev			

Results

 $I_s(50)$ Mean Axial tests = 3.58 MN/m²

I_s(50) Mean Diametral tests = **2.63** MN/m²

 $I_0(50)$ Strength Anisotropy Index = **1.36** (calculated from highest and lowest diametral and axial $I_s(50)$ ratio)

ratio)
Note:Size Correction Factor (F) calculated using $F = (D_e/50)^{0.45}$ (where D_e is equivalent core diameter).

| NS| denotes Non-standard Test. | Point Load Index column: (✓) = included in mean calculations, (χ) = excluded from mean calculations | Lab location: B = Bristol (BS3 4AG), C = Castleford (WF10 1NJ), H = Hemel Hempstead (HP3 9RT), T = Tonbridge (TN11 9HU)

STRUCTURAL SOILS
1a Princess Street
Bedminster
Bristol
BS3 4AG

Compi	Compiled By					
Ct.	EMY HOWARD	01.11.17				
Contract:						

Roade Bypass 313583

RT03 Point Load Testing (in accordance with ISRM 2007)

Exploratory Position ID	Depth (m)	Type of Test	Width or Length (W or L) (mm)	Platen Separation (D) (mm)	Failure Load (P) (kN)	Equivalent Diameter (D _e) (mm)	Point Load (I _s) (MN/m²)	Size Factor (F)	Point Load Index (I _{s(50)}) (MN/m²)	Water Content (%)	Rock Type	Lab location
BH02	16.00	D	100	87	22.560	87	2.98	1.28	3.82 (✔)	2.0	LIMESTONE	В
BH02	16.00	Α	87	105	25.935	108	2.23	1.41	3.15 (✔)	2.0	LIMESTONE	В
												\dashv
												+
			Results						Kev			

Results 8 4

 $I_s(50)$ Mean Axial tests = 3.15 MN/m²

I_s(50) Mean Diametral tests = **3.82** MN/m²

 $I_a(50)$ Strength Anisotropy Index = **1.21** (calculated from highest and lowest diametral and axial $I_s(50)$

Note: Size Correction Factor (F) calculated using $F = (D_a/50)^{0.45}$ (where D_a is equivalent core diameter).

<u>Key</u>
<u>Type of Test column:</u>, A = Axial, D = Diametral, I = Irregular, B = Block, L = Parallel, P = Perpendicular,

NSI denotes Non-standard Test. Point Load Index column: (\checkmark) = included in mean calculations, (χ) = excluded from mean calculations Lab location: B = Bristol (BS3 4AG), C = Castleford (WF10 1NJ), H = Hemel Hempstead (HP3 9RT), T = Tonbridge (TN11 9HU)

STRUCTURAL SOILS 1a Princess Street Bedminster Bristol BS3 4AG

	Comp	Date	Contract Ref:	
C	U .	EMY HOWARD	01.11.17	
Contract:	Ro	ade Bypass 313583		

RT03 Point Load Testing (in accordance with ISRM 2007)

Exploratory Position ID	Depth (m)	Type of Test	Width or Length (W or L) (mm)	Platen Separation (D) (mm)	Failure Load (P) (kN)	Equivalent Diameter (D _e) (mm)	Point Load (I _s) (MN/m²)	Size Factor (F)	Point Load Index (I _{s(50)}) (MN/m²)	Water Content (%)	Rock Type	Lab location
BH02	18.30	D	78	87	1.330	87	0.18	1.28	0.23 (🗸)	6.6	LIMESTONE	В
BH02	18.30	Α	87	74	1.990	91	0.24	1.31	0.32 (✔)	6.6	LIMESTONE	В
												+
			Results						Kev			

Results 8 4

 $I_s(50)$ Mean Axial tests = **0.32** MN/m²

I_s(50) Mean Diametral tests = **0.23** MN/m²

 $I_a(50)$ Strength Anisotropy Index = **1.41** (calculated from highest and lowest diametral and axial $I_s(50)$

Note: Size Correction Factor (F) calculated using $F = (D_a/50)^{0.45}$ (where D_a is equivalent core diameter).

<u>Key</u>
<u>Type of Test column:</u>, A = Axial, D = Diametral, I = Irregular, B = Block, L = Parallel, P = Perpendicular,

NSI denotes Non-standard Test. Point Load Index column: (\checkmark) = included in mean calculations, (χ) = excluded from mean calculations Lab location: B = Bristol (BS3 4AG), C = Castleford (WF10 1NJ), H = Hemel Hempstead (HP3 9RT), T = Tonbridge (TN11 9HU)

STRUCTURAL SOILS 1a Princess Street Bedminster Bristol BS3 4AG

Compi	Compiled By					
CO.	EMY HOWARD	01.11.17				
Contract:						

Roade Bypass 313583

RT03 Point Load Testing (in accordance with ISRM 2007)

Exploratory Position ID	Depth (m)	Type of Test	Width or Length (W or L) (mm)	Platen Separation (D) (mm)	Failure Load (P) (kN)	Equivalent Diameter (D _e) (mm)	Point Load (I _s) (MN/m²)	Size Factor (F)	Point Load Index (I _{s(50)}) (MN/m²)	Water Content (%)	Rock Type	Lab location
BH02	22.17	D	100	87	0.635	87	0.08	1.28	0.11 (🗸)	13	LIMESTONE	В
BH02	22.17	Α	87	44	0.705	70	0.14	1.16	0.17 (✔)	13	LIMESTONE	В
			Results						Kev			

Results 8 4

 $I_s(50)$ Mean Axial tests = **0.17** MN/m²

I_s(50) Mean Diametral tests = **0.11** MN/m²

 $I_a(50)$ Strength Anisotropy Index = **1.56** (calculated from highest and lowest diametral and axial $I_s(50)$

Note: Size Correction Factor (F) calculated using $F = (D_e/50)^{0.45}$ (where D_e is equivalent core diameter).

Type of Test column:, A = Axial, D = Diametral, I = Irregular, B = Block, L = Parallel, P = Perpendicular,

NSI denotes Non-standard Test. Point Load Index column: (\checkmark) = included in mean calculations, (χ) = excluded from mean calculations Lab location: B = Bristol (BS3 4AG), C = Castleford (WF10 1NJ), H = Hemel Hempstead (HP3 9RT), T = Tonbridge (TN11 9HU)

STRUCTURAL SOILS 1a Princess Street Bedminster Bristol BS3 4AG

Contract Ref: Compiled By Date **EMY HOWARD** 01.11.17 Contract:

Roade Bypass 313583

RT03 Point Load Testing (in accordance with ISRM 2007)

Exploratory Position ID	Depth (m)	Type of Test	Width or Length (W or L) (mm)	Platen Separation (D) (mm)	Failure Load (P) (kN)	Equivalent Diameter (D _e) (mm)	Point Load (I _s) (MN/m²)	Size Factor (F)	Point Load Index (I _{s(50)}) (MN/m²)	Water Content (%)	Rock Type	Lab location
BH02	25.05	D	85	87	1.470	87	0.19	1.28	0.25 (✔)	10	LIMESTONE	В
BH02	25.05	Α	87	64	1.160	84	0.16	1.26	0.21 (🗸)	10	LIMESTONE	В
												+
			Results						Kev			

Results 8 4

 $I_s(50)$ Mean Axial tests = **0.21** MN/m²

I_s(50) Mean Diametral tests = **0.25** MN/m²

 $I_a(50)$ Strength Anisotropy Index = **1.2** (calculated from highest and lowest diametral and axial $I_s(50)$

Note: Size Correction Factor (F) calculated using $F = (D_a/50)^{0.45}$ (where D_a is equivalent core diameter).

<u>Key</u>
<u>Type of Test column:</u>, A = Axial, D = Diametral, I = Irregular, B = Block, L = Parallel, P = Perpendicular,

NSI denotes Non-standard Test. Point Load Index column: (\checkmark) = included in mean calculations, (χ) = excluded from mean calculations Lab location: B = Bristol (BS3 4AG), C = Castleford (WF10 1NJ), H = Hemel Hempstead (HP3 9RT), T = Tonbridge (TN11 9HU)

STRUCTURAL SOILS 1a Princess Street Bedminster Bristol BS3 4AG

Compi	Date	
CO.	EMY HOWARD	01.11.17
Contract:		

Contract Ref:

RT03 Point Load Testing (in accordance with ISRM 2007)

Exploratory Position ID	Depth (m)	Type of Test	Width or Length (W or L) (mm)	Platen Separation (D) (mm)	Failure Load (P) (kN)	Equivalent Diameter (D _e) (mm)	Point Load (I _s) (MN/m²)	Size Factor (F)	Point Load Index (I _{s(50)}) (MN/m²)	Water Content (%)	Rock Type	Lab location
BH02	29.10	D	95	88	1.075	88	0.14	1.29	0.18 (✔)	8.3	MUDSTONE	В
BH02	29.10	А	88	77	0.585	93	0.07	1.32	0.09 (🗸)	8.3	MUDSTONE	В
												+
												+
L (FO) Magaz Avial ta	<u> </u>		Results			1			<u>Key</u>		- Darallal D - Darnandia	

		_	

 $I_s(50)$ Mean Axial tests = **0.09** MN/m² I_s(50) Mean Diametral tests = **0.18** MN/m²

 $I_a(50)$ Strength Anisotropy Index = **2** (calculated from highest and lowest diametral and axial $I_s(50)$ ratio) Note: Size Correction Factor (F) calculated using F = $(D_e/50)^{0.45}$ (where D_e is equivalent core diameter).

<u>Key</u>
<u>Type of Test column:</u>, A = Axial, D = Diametral, I = Irregular, B = Block, L = Parallel, P = Perpendicular,

NSI denotes Non-standard Test. Point Load Index column: (\checkmark) = included in mean calculations, (χ) = excluded from mean calculations Lab location: B = Bristol (BS3 4AG), C = Castleford (WF10 1NJ), H = Hemel Hempstead (HP3 9RT), T = Tonbridge (TN11 9HU)

STRUCTURAL SOILS 1a Princess Street Bedminster **Bristol** BS3 4AG

	C	Date	Contract Ref:				
	Co.	EMY HOWARD	01.11.17				
Contract:							
	Roade Bypass 313583						

GINT_LIBRARY V8 06.GLB LibVersion: v8 06 018 PrjVersion: v8 06 - Core+Geotech Lab-Castleford - 008 | GrfcText L - UCS STRESS CONTROL - A4P | 782814 - M1 JUNCTION 15 ROADE BYPASS.GPJ - v8 06. Structural Soils Ltd, Branch Office - Bristol Lab: 1a Princess Street, Bedminster, Bristol, BS3 4AG. Tel: 0117-947-1000, Fax: 0117-947-1004, Web: www.soils.co.uk, Email: ask@soils.co.uk, | 01/11/17 - 10:31 | AF3 |

UNCONFINED COMPRESSIVE STRENGTH

RT05 UCS of Rock-Sample Preparation (In-house method based on ASTM D4543-08 and Eurocode 7 Part 2 W.1.1) RT06 UCS of Rock (In-house method based on ISRM 2007, ASTM D4543-08 and Eurocode 7 Part 2 W.1.1)

Borehole: BH01 Sample Ref: 4 Sample Type: C Depth (m): 14.80

Bulk Density (Mg/m³): 2.48 Dry Density (Mg/m³): 2.37 Moisture Content (%): 4.7 Length (mm): 234.73 Diameter (mm): 86.25 Length/Diameter Ratio: 2.72 Stress Rate (kN/min): 12 Test Duration (mins:secs): 3:42 Load at Failure (kN): 35.0

> UCS (MPa): 6.0 Failure Type: Axial cleavage

Note: **Axis of loading parallel to core axis** Description: **Grey LIMESTONE**

Specimen Preparation: Specimen was not recored.

Sample tolerance checks: Straightness: FAIL. Flatness: PASS. Perpendicularity: PASS.

Rear view (pre-test)

Front view (post-test)

Rear view (post-test)

Samples delivered from site to storage facility. Samples are stored in a frost free environment, at temperatures >4°C Compression machine: Impact CT340 2000kN Auto Compression Machine Serial No. CT340-22. SSL No. 011076

STRUCTURAL SOILS 1a Princess Street Bedminster Bristol **BS3 4AG**

Compiled By					
Ct.		EMY HOWARD	01/11/17		
Contract		Job No			

Roade Bypass 313583

UNCONFINED COMPRESSIVE STRENGTH

RT05 UCS of Rock-Sample Preparation (In-house method based on ASTM D4543-08 and Eurocode 7 Part 2 W.1.1) RT06 UCS of Rock (In-house method based on ISRM 2007, ASTM D4543-08 and Eurocode 7 Part 2 W.1.1)

Depth (m): 12.27 Borehole: BH02 Sample Ref: 3 Sample Type: C

Bulk Density (Mg/m³): 2.49 Dry Density (Mg/m³): 2.37 Moisture Content (%): 5.0 Length (mm): 222.08 Diameter (mm): **86.06** Length/Diameter Ratio: 2.58 Stress Rate (kN/min): 12 Test Duration (mins:secs): 6:58 Load at Failure (kN): 160.6

> UCS (MPa): 27.6 Failure Type: Axial cleavage

Note: **Axis of loading parallel to core axis** Description: **Grey LIMESTONE**

Specimen Preparation: Specimen was not recored.

Sample tolerance checks: Straightness: FAIL. Flatness: PASS. Perpendicularity: PASS.

Front view (pre-test)

Rear view (pre-test)

Front view (post-test)

Rear view (post-test)

Samples delivered from site to storage facility. Samples are stored in a frost free environment, at temperatures >4°C Compression machine: Impact CT340 2000kN Auto Compression Machine Serial No. CT340-22. SSL No. 011076

STRUCTURAL SOILS 1a Princess Street Bedminster Bristol **BS3 4AG**

Compiled By					
Co.	EMY HOWARI)	01/11/17		
Contract	Job No				

Roade Bypass 313583

SUMMARY OF CHEMICAL ANALYSES

Exploratory Position ID	Sample Ref	Sample Type	Depth (m)	Acid Soluble Sulphate (% SO ₄)	Aqueous Extract Sulphate (mg/l SO ₄)	pН	Total Sulphur (%)	Description
BH01	1	С	9.00	0.06	290	9.04	0.70	Dark brownish grey MUDSTONE
BH01	4	С	14.80	0.41	652	6.63	1.44	Grey LIMESTONE
BH02	3	С	12.27	0.19	239	7.44	0.13	Grey LIMESTONE
BH02	7	С	18.30	0.20	158	8.29	0.70	Grey LIMESTONE
BH03	1	С	14.02	0.42	530	7.85	1.39	Grey MUDSTONE
BH04	1	С	12.00	0.23	260	8.25	0.54	Grey MUDSTONE
BH05	1	С	12.30	0.03	119	8.35	0.40	Grey MUDSTONE

NOTES:- Chemical tests were undertaken by Envirolab

an.	STRUCTURAL SOILS 1a Princess Street
Chyll .	Bedminster
	Bristol
7 3	BS3 4AG

	Date		
	Ct .	EMY HOWARD	01.11.17
Contract:	Ro	ade Bypass 313583	
		/	

Contract Ref:

APPENDIX Q UPDATED GEOTECHNICAL RISK REGISTER

Preliminary Geotechnical Risk Register

It is understood that the site is being considered for a new bypass from the A508 (Northampton Road) north of the town of Roade, around its western extents, and rejoining the A508 (Stratford Road), south of Roade, as shown in Figure 1. At this stage, two possible routes are proposed, as indicated on Figure 2
Site levels along the proposed route of the new bypass are undulating, and a cut and fill exercise is likely to be undertaken in order to reduce the level changes along the proposed route.

Geotechnical Risk Register

The Geotechnical Risk Register has been compiled to show the degree of risk attached to various ground related aspects of the proposed development. The purpose of the register is to provide an assessment of the risk to the project posed by common ground related problems, and to identify suitable mitigation measures for the control of risk to an acceptable level. The risk register should be developed and refined as the geotechnical design and assessment progresses such that the register will allow the management of the geotechnical risks.

The inclusion of a risk in the register does not constitute confirmation that the problem actually exists at the site. A probability of 'very unlikely' is indicative of a condition which the available data suggests should not be present. The calculated risk is not the risk that the impact will occur it is the risk that the mitigation will be required to enable the project to progress. For the purposes of this risk register the magnitude of each impact and the resulting severity of risk is measured against that which would could 'normally' be expected for each element. Before incorporation into a project risk register the impacts and risks for each element should be moderated by an assessment of the cost and time implication of individual mitigation measures.

The Geotechnical Risk Register has been developed in general accordance with the guidance presented in ICE/DETR Document 'Managing Geotechnical Risk' (2001) and the HA documents HD41/03 and HD22/02. The degree of risk (R) is determined by combining an assessment of the probability (P) of the hazard occurring with an assessment of the Impact (I) the hazard and associated mitigation will cause if it occurs (R = P x I). The scale against which the probability and impact are measure and the resulting degree of risk determined is presented below.

Probability	(P)
Very Likely (VLk)	5
Likely (Lk)	4
Plausible (P)	3
Unlikely (U)	2
Very Unlikely (VU)	1

Impact	(I)
Very High (VH)	5
High (H)	4
Medium (M)	3
Low (Lw)	2
Very Low (VLw)	1

(R)	Risk
20 – 25	Severe (Sv)
15 – 19	Substantial (Sb)
10 – 14	Moderate (Md)
5 – 9	Minor (Mn)
1 – 4	None / Negligible (N)

313583 - 02 Page 1 of 6

				Befo	ore Cor	ntrol	Comments and Proposed Mitigation	RR
	Conditions			Р	I	R		
Contaminated Land	Previous site use		Health and safety, environmental damage, pollution requiring Remediation	U 2	H 2	N 4	The site appears to be primarily greenfield with the exception of a small areas around various roads, existing railways, and disused railway land, and only negligible amounts of Made Ground are likely in localised areas. Comparison of soil samples to relevant GAC indicate no exceedances are present and therefore it is considered low risk.	N
	Mine Shafts	Shaft Collapse	Surface deformation, structural damage. Health and Safety	VU 1	H 4	N 4	Site is not within mining area as defined on Coal Authority (CA) gazetteer and web site. No evidence of mine shafts observed on site.	N
	Shallow Mining		Surface deformation, structural damage.	VU 1	H 4	N 4	Site is not within mining area as defined on Coal Authority (CA) gazetteer and web site. No evidence of shallow mining observed on site.	N
Ø	Deep Mining	Workings Consolidation, subsidence	Surface deformation	VU 1	M 3	N 3	Site is not within mining area as defined on Coal Authority (CA) gazetteer and web site. No evidence of deep mining observed on site.	N
Underground Voids	Natural cavities; solution features, Caves and Gulls		Surface deformation, structural damage. Health and Safety	VU	M	N	Geology unlikley to be conducive to the formation of solution features. No evidence of natural cavities or solution features observed on site.	N
Underg				1	3	3		
	Other voids; basements, sumps, tanks, wells and adits etc.		Surface deformation, structural damage. Health and Safety	Р	Lw	N	The vast majority of the site is undisturbed farm land. The walkover nor the ground investigation has not indicated any possible voids, man made or otherwise, at the site. Vigilance required during construction works in order to ensure that any voids encountered are appropriately remediated and backfilled.	N
				2	2	4		

313583 - 02 Page 2 of 6

	Condition	Hazard	Impact	Р	- 1	R	Comment / Mitigation	RR
	Existing steep slopes on site	Slope failure	Site stability; surface deformation at crest, structural damage to services, highways and	Lk	VH	Sv	The existing railway line crossing the north of the site is located in a steep deep cutting, which is, in parts, a protected site (the Roade Cutting), and will require bridging as part of the development. Ground Investigation has confirmed the ground model and strata properties, however no slope stability assessment has been undertaken at this	Md
			adjoining property.	4	5	20	preliminary stage as it is assumed that piled foundation solutions will be utilised to transfer the laods of teh proposed bridge down to the solid deposits well below the cutting, thereby avoiding adding destabilising laods to the cutting.	
	Gradient on site	walls required to accommodate layout development been made available to RSK for full earthworks design, hower in			Cut to fill earthworks will be required to develop the site to form suitable highway vertical alignments. Therefore slopes may be created as part of the finished design. Drainage will be important in the design of these slopes. No final earthworks plan has been made available to RSK for full earthworks design, howver it is anticipated that natural deposist would be usable as a cut and fill excercise and would be possible too form suitable safe low embankments and cutting slopes.	Md		
s and Earthworks	As-dug cut material unsuitable as fill	Unstable earthworks	Surface deformation, structural damage	P 3	H 4	Md 12	It is anticipated that the majority of materials within the cut areas will be suitable for reuse, however these materials are expected to be sensitive to moisture content change and could be wet of optimum allowable ranges to allow structural reuse. Therefore soils may need modification or stabilisation in structural fill areas and will need careful handling throughout the works. Further investigation of the geotechnical properties of material is required for full earthworks design at detailed design stage.	Md
Slopes	Embankment Stability	deformation at cr structural damag services , highwa	Site stability; surface deformation at crest, structural damage to services , highways and adjoining property.	P 3	VH 5	Sb 15	Embankments will need to be carefully designed and will need to accommodate suitable side slope angles, drainage systems and foundations. No earthworks plan has been supplied to RSK and therefore, no assessment to embankment stability can be made. Further investigation of the geotechnical properties of material is required for full earthworks design at detailed design stage.	Md
	Cutting Stability	Slope failure	Site stability; surface deformation at crest, structural damage to services, highways and adjoining property.	P 3	VH 5	Sb 15	Slopes will need to be carefully designed and will need to accommodate suitable drainage systems. No earthworks plan has been supplied to RSK and therefore, no assessment to cutting stability can be made. Further investigation of the geotechnical properties of material is required for full earthworks design at detailed design stage.	Md
		Import required to achieve design levels	Increased cost of development	Р	н	Md	A careful cut to fill balance should be achieved to avoid the unnecessary importation of fill materials. No earthworks plan has been supplied to RSK and therefore unable to complete a material balance assessment. Available information suggests that all	Md

313583 - 02 Page 3 of 6

				3	4	12	natural materials identified to be present should be suitable for reuse. Further investigation of the geotechnical properties of material is required for full earthworks design at detailed design stage.	
	Condition	Hazard	Impact	Р	I	R	Comment / Mitigation	RR
s		Ground unsuitable for conventional shallow footings	Excess settlement or alternative foundations	P 3	H 4	Md 12	Ground investigation has revealed that the site is predominately underlain by Glacial Till, which is known to be an overconsolidated clay. These materials are unlikly to be suseptible to significant selttlment although care will need to be taken on the design of the railway overbridge approaches where limited historic fill (derived from natural soils) is thought to have been identified and it is possible that this may need to be removed and re-engineered into place.	Md
ons & Substructures	Adjacent Structures	Works on site affecting stability of adjacent structures	Alternative design or altered development layout.	P 3	H 4	Md 12	No buildings immediately adjacent to the site. However the design of cuttings and embankments will need to be suitably robust and take account of the proximity of the railway cutting, Blisworth Road and the A508 respectively. Further detailed investigation of the area near the Roade railway cutting will be required at detailed design stage, howver initial information suggests piled or deep tradditional foundation options might be feaible with good solid strata present beneath the brdige abutments.	Md
Foundations	Differential Settlement	Settlements / heave beneath proposed road as a result of cut to fill works.	Damage to floors and structures.	P 3	H 4	Md 12	Careful design has to be undertaken to smooth the transition from cut insitu materials to engineered fill materials.	Mn
	Aggressive Ground Chemistry	Attack of buried concrete	Protection required	Lk 4	M 3	Md	Available information suggests that gypsum a naturally occurring sulphate could be present within several strata at depth beneath the site and this will require more resistant concrete mix designs to be used to protect in ground concrete from attack. Ground Investigation has indicated elevated levels of sulphate within groundwater. The Blisworth Limestone Formation is a member of the Blue Lias Group which are known to bear pyritic strata. Special concrete mix designs will be required for ingroudn concrete.	Mn

313583 - 02 Page 4 of 6

	Condition	Hazard	Impact	Р	-1	R	Comment / Mitigation	RR
Pavements	Soft and compressible near surface soil	Ground unsuitable for conventional highway foundations	Alternative highway bridge foundation designs	VU 1	M 3	N 3	Geology is not anticipated to be particularly susceptible to significant risks of settlement	Mn
Floor slabs and Road Paver	Soft and compressible near surface soil	Low CBR due to soft formation	Surface damage possible exceeding serviceability tolerances requiring increased highway foundation thickness or alternative ground improvement or reinforcement.	U 2	M 3	Mn 6	and is not anticipated to be particularly soft, loose or of poor bearing capacity. Traditional highway foundation and design construction is anticipated. Design will need to take account of specification for earthworks which may need to include soil stabilisation improvement. Any stabilisation needs to take account of the risk of heave from the presence of naturally occurring high sulphate concentrations in the soils. Ground Investigations have confirmed the ground mdoel and strata classifications. The strata present will all be suitable for reuse in cut and fill earthworks provided they are handled correctly. Further more, detailed earthworks investigations may be necessary at detailed design stage to inform earthworks specification.	Mn
Floor	Frost susceptible soils	Frost Heave	Surface damage or alternative design	P 3	M 3	Mn 9	Road pavement construction thickness design should incorporate this risk.	Mn
	High permeability Strata	Ineffective storm water attenuation ponds/water & ecology features	Ponds need lining if required to retain water.	U	M	Mn	Shallow soils across the majority of the site are anticipated to be cohesive and are likely to retain water. Locally, granular soils were only observed within the central part of the propsed route, near eexploratory positions WS03, BH04. Designs need to take account of the prevailing ground conditions at the proposed locations and depths.	Mn
				2	3	6		
Flooding	Low Permeability Strata	Ineffective soakaways	Alternative drainage required	VLk 5	M 3	Sb 15	Shallow soils are anticipated to be cohesive and are likely to retain water. Locally, granular soils were only observed within the central part of the propsed route, near eexploratory positions WS03, BH04. Designs need to take account of the prevailing ground conditions at the proposed locations and depths. Soakawy tests failed confirming shallow strata at pond locations are unlikely to be suitable for soakage.	Md
Drainage & I	High groundwater	Effects plateau and cutting levels & foundation designs, in particular cutting depths.	Alternative vertical alignment/plateau levels required affecting cut fill balance feasibility	P 3	H 4	Md 12	The site is generally underlain by low permeability, unproductive strata (Oadby Member), and pockets of perched water were encountered within shallow soils. A deep groundwater table is present within the Blisworth Limestone Formation/ Rutland Formation but this does not appear to affect the proposed scheme.	N
	Embankment earthworks and cutting slopes will require drainage.	Insufficient attenuation soakaways/ponds to accommodate earthworks drainage	Flooding	Lk 4	M 3	Md 12	Drainage designs to accommodate expected drainage from earthworks slopes and cutting drains in addition to highways surface water run off.	Mn
	Local watercourse	Flooding	Flood protection required	Р	Н	Md	The site is located within localised areas potentially at risk of surface and groundwater flooding relating to streams and groundwater. Specialist flood risk assessment and	Mn
				3	4	12	drainage designs are being undertaken by others to mitigate these potential risks.	

313583 - 02 Page 5 of 6

	Condition	Hazard	Impact	Р	1	R	Comment / Mitigation	RR
	Loose or unstable strata at shallow depth	Excavation Instability	Collapse or support required. Health and safety	Р	Н	Md	The majority of strata present across the site are anticipated to be generally stable in the short term during excavation as seen within the trial pit excavation as all remained stable.	Mn
				3	4	12		
Construction Issues	Hard Strata / obstructions at shallow depth	Hard Digging	Increase cost and delay	P 3	M 3	Mn 9	Hard strata in the form of limestone and mudstone bedrock may be present at depth within the solid geology and could be encountered as part of the major earthworks depending upon the proposed vertical alignment. Shallower limestone beds were encountered within trial pits towards the northern part of the proposed route however it is anticipated that the highway alignment will closely follow the exisiting groundlevels for the most part and therefore the risk of encountering hard strata is anticipated to be low.	
∘ઇ	Presence of unrecorded sensitive underground services.	Damage during works posing risk to H&S of personnel and public	Increased cost of delay and for unplanned diversions and protection or repair.	U 2	H 4	Mn 8	Vigilance throughout works. Ensure up to date service drawings are obtained and site is scanned before works commence. Ensure all utilities diverted.	Mn
Temporary Works	Shallow Groundwater	Inundation of Excavations	Increase cost and delay. Health and safety	P 3	M 3	Mn 9	Shallow perched groundwater tables may be possible within the shallow Glacial till in granular pockets and any Glaciofluvial Deposits and could be intersected by earthworks cuttings and foundations. Ground Investigation has proven localised perched water within glacial till but these are not thought to be a continuous water table.	Mn
	Contaminated Ground	Precautions for Ground workers	Increase cost and delay. Health and safety	U 2	M 3	Mn 6	Vigilance throughout works. Seek advice of Environmental Engineer if any identified unusual odorous or visually contaminated materials encountered. No contaminated	Mn
	Contaminated Ground	Increased Disposal Costs	Increase cost and delay. Health and safety	U 2	M 3	Mn 6	land has been encountered during the site investigation. Should potentially contaminated ground be encountered during the groundworks, seek advice from environmental engineer.	

Note: The register only considers geotechnical risk other risks may be present on site, including in-ground risks such as; ecology, archaeology, buried services, UXO etc., which are outside the scope of this assessment.

313583 - 02 Page 6 of 6

APPENDIX R UPDATED CONTAMINATED LAND REGISTER

Contaminated Land Risk Assessment

In accordance with Environment Agency publication CLR 11 'Model Procedures for the Management of Land Contamination', a preliminary contaminated land risk assessment has been developed for the Site.

The risk assessment has been carried out using the risk model defined and outlined in the following table.

Potential sources have been identified from the desk study information and the guidance provided in EA publication CLR 8 'Potential Contaminants for the Assessment of Land'.

Hazard linkages will be determined by the proposed investigation and the risk re-assessed on the basis of the viability of the linkage.

If the hazard linkage is confirmed then remediation or management solutions will be proposed to ensure that no unacceptable risk remains following development.

	Category	Definition
	Severe	Acute risks to human health, catastrophic damage to buildings/property, major pollution of controlled waters
Potential	Medium	Chronic risk to human health, pollution of sensitive controlled waters, significant effects on sensitive ecosystems or species, significant damage to buildings or structures
Severity	Mild	Pollution of non sensitive waters, minor damage to buildings or structures
	Minor	Requirement for protective equipment during site works to mitigate health effects, damage to non sensitive ecosystems or species
	High Likelihood	Pollutant linkage may be present, and risk is almost certain to occur in long term, or there is evidence of harm to the receptor
Probability of	Likely	Pollutant linkage may be present, and it is probable that the risk will occur over the long term
Risk	Low Likelihood	Pollutant linkage may be present, and there is a possibility of the risk occurring, although there is no certainty that it will do so
	Unlikely	Pollutant linkage may be present, but the circumstances under which harm would occur are improbable

		Potential severity	Potential severity									
		Severe	Medium	Mild	Minor							
	High Likelihood	Very High	High	Moderate	Moderate/Low							
Probability of	Likely	High	Moderate	Moderate/Low	Low							
Risk	Low Likelihood	Moderate	Moderate/Low	Low	Negligible							
	Unlikely	Moderate/Low	Low	Negligible	Negligible							

Contaminated Land Risk Assessment (Conceptual Site Model)

Source			Initial Asse	ssment from			Hazard	Revised		
(type and location)	Pathway	Receptor	Severity	Information Prob.	Risk	Proposed Investigation /Comments	Linkage	Risk	Proposed Remediation / Management	Residual Risk
	Inhalation of	Site workers	Medium	Unlikely	Low	Only potential source identified relates to the railway land, including the active line in the centre	Absent	Negligible		Negligible
	vapour	End users	Medium	Unlikely	Low	of the site, and the disused land at its southern extent, There is a potential for isolated areas of	Absent	Negligible		Negligible
Petroleum hydrocarbon	Ingestion and	Site workers	Medium	Unlikely	Low	spills and leaks from agricultural machinery in other areas of the site however this is very unlikely and would be anticipated to be very localised and	Absent	Negligible		Negligible
compounds (petrol, diesel & oil) and	absorption via direct contact	End users	Medium	Unlikely	Low	very minor. Watching brief and testing to be undertaken during	Absent	Negligible	Vigilance to be pointed and throughout the continuous and enabling works	Negligible
associated volatile organic compounds within shallow soil /	Migration by surface run-off	Surface water drainage	Medium	Unlikely	Low	site strip and enabling works. Ground Investigation was undertaken in areas	Absent	Negligible	Vigilance to be maintained throughout the earthworks and enabling works. Should any suspicious, unexpected strata, materials or Made Ground materials be identified visually or by means of strange odours the advice of	Negligible
within shallow soil / groundwater (associated with	Migration by	Surface water drainage	Medium	Unlikely	Low	not previously investigated to inform detailed design and to confirm these assumptions.	Absent	Negligible	a specialist Geo-environmental Engineer should be sought.	
minor spills and releases within	liquid flow	Aquifer	Medium	Unlikely	Low	No materials thought to be contaminated by visual or olfactory means were identified. A screening	Absent	Negligible	The Geo-Environmental advisor shall provide advice on immediate actions and undertake investigation, testing and liaison with regulators and contractors on how to proceed safely.	Negligible
agricultural fields and on and adjacent to active and former railway land						spread of samples from the shallow and near surface soils were tested to confirm chemical status of the extended area site and no significant contamination was identified.	Absent	Negligible	contractors on now to proceed surely.	Negligible
	Plant uptake	Local flora	Mild	Unlikely	Negligible	Groundwater monitoring wells were installed and where feasible groundwater samples were taken and tested to confirm existing groundwater quality in areas not previously investigated and no significant contamination was identified.				
	Inhalation of	Site workers	Medium	Unlikely	Low	Only potential source of heavy metals identified relates to the railway land, including the active line	Absent	Negligible		Negligible
	fugitive dust	End users	Medium	Unlikely	Low	in the centre of the site, and the disused land at its southern extent, no other sources of heavy metals	Absent	Negligible		Negligible
	Ingestion and	Site workers	Medium	Unlikely	Low	identified across the site although past use of soil improvers and/or sewerage sludge's to fertilise the land could have resulted in some metals. Natural	Absent	Negligible		Negligible
Toxic & phytotoxic	absorption via direct contact	End users	Medium	Unlikely	Low	soil concentrations may also be present. Slightly elevated arsenic maybe encountered within	Absent	Negligible		Negligible
heavy metals and semi metals within	Migration by surface run-off	Surface water drainage	Medium	Unlikely	Low	natural soils but is anticipated to be below acceptable commercial end use values.	Absent	Negligible		Negligible
shallow soil / groundwater	Migration in	Surface water drainage	Medium	Unlikely	Low	Watching brief and testing to be undertaken during site strip and enabling works. Ground Investigation was undertaken in areas	Absent	Negligible	Vigilance to be maintained throughout the earthworks and enabling works. Should any suspicious, unexpected strata, materials or Made Ground materials be identified visually or by means of strange odours the advice of	Negligible
associated with natural soils and fertilisers and soil	solution via groundwater	Aquifer	Medium	Unlikely	Low	not previously investigated to inform detailed	Absent	Negligible	a specialist Geo-environmental Engineer should be sought.	Negligible
improvers (possible use of sewerage sludge's)	Plant uptake	Local flora	Mild	Unlikely	Negligible	design and to confirm these assumptions. A ple No Made Ground was identified or materials	Absent	Negligible	The Geo-Environmental advisor shall provide advice on immediate actions and undertake investigation, testing and liaison with regulators and contractors on how to proceed safely.	Negligible
	Tan uptare	Local Hora	Ground where the and test in area			Groundwater monitoring wells were installed and where feasible groundwater samples were taken and tested to confirm existing groundwater quality in areas not previously investigated and no significant contamination was identified.				
Fly Tipped Meterial	Ingestion and	Site workers	Medium	Unlikely	Low	Site walkover suggests there is no evidence of fly	Absent	Negligible]	Negligible
Fly Tipped Material	absorption via direct contact	End users	Medium	Unlikely	Low	tipped material at the site during desk based study and intrusive investigation works.		3 3		- 5 - 5

Source			Initial Asse	ssment from			Hazard	Revised		
(type and location)	Pathway	Receptor	Severity	Information Prob.	Risk	Proposed Investigation	Linkage	Risk	Proposed Remediation / Management	Residual Risk
		Site workers	Medium	Low Likelihood	Moderate to Low	No buildings clong the present route that would	Absent	Negligible	Vigilance to be maintained throughout the earthworks and enabling works. Should any suspicious, unexpected strata, materials or Made Ground	Negligible
Asbestos within Soil	Inhalation of fugitive dust	End users	Medium	Low Likelihood	Moderate to Low	No buildings along the present route that would need removal and no evidence of asbestos past or present. Ground Investigation was undertaken in areas not previously investigated to inform detailed design and to confirm these assumptions. No Made Ground was identified, or materials thought to be contaminated by visual or olfactory means. A screening spread of samples from the shallow and near surface soils were tested to confirm chemical status of the extended area site and no asbestos contamination was identified.		Negligible	materials be identified visually or by means of strange odours the advice of a specialist Geo-environmental Engineer should be sought. The Geo-Environmental advisor shall provide advice on immediate actions and undertake investigation, testing and liaison with regulators and contractors on how to proceed safely	Negligible
	Migration in to excavations	Site workers	Severe	Unlikely	Moderate to Low	Site appears to be greenfield with no naturally occurring organic soils likely to be a potential	Absent	Negligible	Construction workers should still ensure that any works that need to be undertaken below ground level or within excavation are treated as confined	Negligible
Ground Gas from	Minutin is to					source of soil gas. Ground Investigation was undertaken in areas not previously investigated to inform detailed design and to confirm these assumptions. No Made Ground was identified, or materials thought to be likely to generate soil gas. No	Absent	Negligible	space works and all normal confined space H&S protocols are adopted including but not limited to atmosphere testing and suitable excavation support.	Negligible
Made Ground and natural strata	Migration in to development, service ducting etc.	End Users Se	Severe Unlike	Unlikely	Moderate to Low	significant contamination was identified. Monitoring of instrumentation installed in boreholes has confirmed there is no significant soil gas present that would be considered a risk to the proposed scheme or end users. It should be noted that cohesive soils present				
						across the site would prevent/ limit potential pathways from any perceived off site sources migrating on to the site.				
Aggressive substances	Direct contact	Buried Structures	Medium	Low Likelihood	Moderate to Low	Available data suggests the potential presence of naturally occurring high sulphates levels might be	Absent	Negligible		Negligible
(sulphates, acids, phenols, petroleum) in Shallow soils / groundwater	Direct contact with construction materials	Buried Services	Medium	Low Likelihood	Moderate to Low	present at depth within the strata present. This has been confirmed by ground investigation sample testing.	Absent	Negligible	Design of in ground concrete will take account of the anticipated ground conditions and available test results to ensure a suitably robust concrete mix design is utilised in accordance with BRE SD1:2005.	Negligible
	Inhalation of	Site workers	Medium	Unlikely	Low	Site is a modern arable farm. Modern arable farming should only utilise non persistent	Absent	Negligible		Negligible
	vapour	End users	Medium	Unlikely	Low	biodegradable safe pesticides and herbicides for crop production which are licensed and controlled. However, the use of environmentally persistent	Absent	Negligible		Negligible
	Ingestion and absorption via	Site workers	Medium	Unlikely	Low	pesticides and herbicides may have historically been used in arable farming and as such the	Absent	Negligible		Negligible
Harbinidas and	direct contact	End users	Medium	Unlikely	Low	presence of widespread soil contamination by older uncontrolled and unlicensed persistent and	Absent	Negligible	Vigilance to be maintained throughout the earthworks and enabling works. Should any suspicious, unexpected strata, materials or Made Ground	Negligible
Herbicides and Pesticides within shallow soil	Migration by surface run-off	Surface water drainage	Medium	Unlikely	Low	dangerous herbicides and pesticides is considered possible though is unlikely.	Absent	Negligible	materials be identified visually or by means of strange odours the advice of a specialist Geo-environmental Engineer should be sought.	Negligible
(associated with the arable fields)	Migration by liquid flow			Ground Investigation was undertaken in areas not previously investigated to inform detailed	Absent	Negligible	The Geo-Environmental advisor shall provide advice on immediate actions and undertake investigation, testing and liaison with regulators and	Negligible		
	ilquiu IIOW	Aquifer	Medium	Unlikely	Low	design and to confirm these assumptions.	Absent	Negligible	contractors on how to proceed safely.	Negligible
	Plant uptake	Local flora	Medium	Unlikely	Low	No Made Ground was identified, or materials thought to be contaminated by visual or olfactory means. A screening spread of samples from the shallow and near surface soils were tested to confirm chemical status of the extended area site and no significant pesticides or herbicide contamination was identified.	Absent	Negligible		Negligible

						Groundwater monitoring wells were installed and where feasible groundwater samples were taken and tested to confirm existing groundwater quality in areas not previously investigated and no significant contamination was identified.				
	Migration in to excavations	Site workers	Severe	Unlikely	Moderate to Low	Currently active and historic refuse facilities and landfill located south-east of the site, beyond the	Absent	Negligible		Negligible
Ground Gas migration from landfill south-east of the site.	Migration in to development	End Users	Severe	Unlikely	Moderate to Low	A508. Site appears to be Greenfield with no naturally occurring organic soils likely to be a potential source of soil gas. Ground Investigation was undertaken in areas not previously investigated to inform detailed design and to confirm these assumptions. No Made Ground was identified, or materials thought to be likely to generate soil gas. No significant contamination was identified. Monitoring of instrumentation installed in boreholes has confirmed there is no significant soil gas present that would be considered a risk to the proposed scheme or end users. It should be noted that cohesive soils present across the site would prevent/ limit potential pathways from any perceived off site sources migrating on to the site.	Absent	Negligible	Vigilance to be maintained throughout the earthworks and enabling works. Should any suspicious, unexpected strata, materials or Made Ground materials be identified visually or by means of strange odours the advice of a specialist Geo-environmental Engineer should be sought. The Geo-Environmental advisor shall provide advice on immediate actions and undertake investigation, testing and liaison with regulators and contractors on how to proceed safely.	Negligible

APPENDIX S HASWASTE

_	_	
Roade	Bypass	313583

TP/WS/BH	
Depth (m)	
Fandanish automas	

% Moisture	I	9
pH (soil)		
pH (leachate)		
Arsenic		mg
Cadmium	updated v5.4ei	mg
Copper		mς
CrVI or Chromium		mς
Lead		mς
Mercury		mς
Nickel		mç
Selenium		mç
Zinc	updated v5.4ei	mç
Barium		mg
Beryllium		mg
Vanadium		mg
Cobalt		mg
Manganese		mg
Molybdenum		mç
Antimony		mç
Aluminium		mç
Bismuth		mç
Crill		mç
Iron		mç
Strontium		mg
Tellurium		mg
Thallium Titanium		mg
		mç mç
Tungsten Ammoniacal N		mg
ws Boron		mg
WS DUIUII	L	ıııç

pH (leachate)	ļ
Arsenic	mg/kg
Cadmium	updated v5.4ei mg/kg
Copper	mg/kg
CrVI or Chromium	mg/kg
Lead	mg/kg
Mercury	mg/kg
Nickel	mg/kg
Selenium	mg/kg
Zinc	updated v5.4ei mg/kg
Barium	mg/kg
Beryllium	mg/kg
Vanadium	mg/kg
Cobalt	updated v5.4ei mg/kg
Manganese	updated v5.4ei mg/kg
Molybdenum	mg/kg
Antimony	mg/kg
Aluminium	mg/kg
Bismuth	mg/kg
Crill	mg/kg
Iron	updated v5.4ei mg/kg
Strontium	mg/kg
Tellurium	mg/kg
Thallium	mg/kg
Titanium	mg/kg
Tungsten	mg/kg
Ammoniacal N	mg/kg
ws Boron	mg/kg
PAH (Input Total PAH OR individua	I DAH roculte)
Acenaphthene	mg/kg
Acenaphthylene	mg/kg
Anthracene	mg/kg
Benzo(a)anthracene	mg/kg
Benzo(a)pyrene	mg/kg
Benzo(b)fluoranthene	mg/kg
Benzo(ghi)perylene	mg/kg
Benzo(k)fluoranthene	mg/kg
Chrysene	mg/kg
Dibenzo(ah)anthracene	mg/kg
Fluoranthene	mg/kg
Fluorene	mg/kg
Indeno(123cd)pyrene	mg/kg
Naphthalene	mg/kg
Phenanthrene	mg/kg
Pyrene	mg/kg
Coronene	mg/kg
Total PAHs (16 or 17)	mg/kg
TPH	
Petrol	mg/kg
Diesel	mg/kg
Lube Oil	mg/kg
Crude Oil	mg/kg
White Spirit / Kerosene	mg/kg mg/kg
Creosote	
Unknown TPH with ID	mg/kg
Unknown TPHCWG	mg/kg
Total Sulphide	mg/kg
Complex Cyanide	mg/kg
Free (or Total) Cyanide	mg/kg
Free (or Total) Cyanide Thiocyanate	mg/kg
Thiocyanate Elemental/Free Sulphur	
Thiocyanate	mg/kg mg/kg mg/kg

ws Boron	
PAH (Input Total PAH OR individua	I PAH results)
Acenaphthene	
Acenaphthylene	
Anthracene	
Benzo(a)anthracene	
Benzo(a)pyrene	
Benzo(b)fluoranthene	
Benzo(ghi)perylene	
Benzo(k)fluoranthene	
Chrysene	
Dibenzo(ah)anthracene	
Fluoranthene	
Fluorene	
Indeno(123cd)pyrene	
Naphthalene	
Phenanthrene	
Pyrene	
Coronene	
Total PAHs (16 or 17)	ļ
TPH	

Total i Alia (10 oi 17)	
TPH	
Petrol	mg/k
Diesel	mg/k
Lube Oil	mg/k
Crude Oil	mg/k
White Spirit / Kerosene	mg/k
Creosote	mg/k
Unknown TPH with ID	mg/k
Unknown TPHCWG	mg/k
Total Sulphide	mg/k
Complex Cyanide	mg/k
Free (or Total) Cyanide	mg/k
Thiocyanate	mg/k
Elemental/Free Sulphur	mg/k
Phenois Input Total Phenois HPLO	OR individual Phenol
results.	

results.	_
Phenol	mg/k
Cresols	mg/k
Xylenols	mg/k
Resourcinol	mg/k
Phenois Total by HPLC	mg/k
BTEX Input Total BTEX OR individ	lual BTEX results.
Benzene	mg/k
Toluene	mg/k
Ethylbenzene	mg/k
Xylenes	mg/k
Total BTEX	mg/k
PCBs (POPs)	
PCBs Total (eg EC7/WHO12)	ma/k

PCBs Total (eg EC7/WHO12)	
PBBs (POPs)	
Hexabromobiphenyl (Total or PBB153; 2,2',4,4',5,5'- if only	
PBB153; 2,2',4,4',5,5'- if only	
available)	
	_

	TP01 0.20	TP02 0.20	TP03 0.30	TP04 0.50	TP05 0.20	TP12 0.20	TP14 0.20	TP15 0.20	TP15 1.50
%	7.66	7.15	8.10	8.20	6.86	7.90	7.67	7.40	8.47
mg/kg	4	10	2	<1	4	11	7	8	<1
mg/kg mg/kg	0.9 33 36	1.1 16 26	1.0 24 39	1.0 15 37	0.7 12 34	1.1 15 26	1.0 14 26	1.3 15 35	<0.5 5 11
mg/kg mg/kg mg/kg	30 0.17	24 0.17	20 0.30	16 0.17	21 0.17	96 0.17	26 21 0.17	22 0.17	4 0.17
mg/kg mg/kg	26 1	24 1	31 1	30 1	21 1	27 1	26 1	29 1	11 1
mg/kg mg/kg mg/kg	82	68	69	53	63	73	71	87	16
mg/kg mg/kg									
mg/kg mg/kg									
mg/kg mg/kg mg/kg									
mg/kg mg/kg									
mg/kg mg/kg mg/kg									
mg/kg mg/kg									
mg/kg mg/kg									
mg/kg mg/kg	0.01 0.01								
mg/kg mg/kg	0.02 0.04								
mg/kg mg/kg	0.06 0.05	0.04 0.05							
mg/kg mg/kg mg/kg	0.05 0.07 0.06								
mg/kg mg/kg	0.04	0.04	0.04 0.08						
mg/kg mg/kg	0.01 0.04	0.01 0.03							
mg/kg mg/kg mg/kg	0.03 0.03 0.07								
mg/kg mg/kg	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07
mg/kg									
mg/kg mg/kg									
mg/kg mg/kg									
mg/kg mg/kg									
mg/kg mg/kg	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
mg/kg mg/kg mg/kg									
mg/kg Phenol									
mg/kg									
mg/kg mg/kg mg/kg									
mg/kg S.									
mg/kg mg/kg	0.01 0.01								
mg/kg mg/kg mg/kg	0.01 0.01 0.01								
mg/kg		1	2.01	2.01		2.01		2.01	
grkg		I							
mg/kg									

Haswaste, developed by Dr. lain Haslock

Roade	Bypass	313583

TP/WS/BH Depth (m) Envirolab reference

TP01	TP02	TP03	TP04	TP05	TP12	TP14	TP15	TP15
0.20	0.20	0.30	0.50	0.20	0.20	0.20	0.20	1.50

POPs Dioxins and Furans Input Total Dioxins and Furans

JITS.
mg/kg

-					

Some Pesticides (POPs unless o	therwise state	•								
Aldrin		mg/kg		0.050000			0.050000			
α Hexachlorocyclohexane (alpha- HCH) (leave empty if total HCH results used)		mg/kg		0.050000			0.050000			
β Hexachlorocyclohexane (beta- HCH) (leave empty if total HCH results used)		mg/kg		0.050000			0.050000			
α Cis-Chlordane (alpha) <i>OR Total</i> Chlordane		mg/kg								
δ Hexachlorocyclohexane (delta- HCH) (leave empty if total HCH results used)		mg/kg								
Dieldrin	updated v5.4ei	mg/kg		0.050000			0.050000			
Endrin	ļ	mg/kg		0.050000			0.050000			
χ Hexachlorocyclohexane (gamma- HCH) (lindane) <i>OR Total HCH</i>	updated v5.4ei	mg/kg		0.050000			0.050000			
Heptachlor		mg/kg		0.050000			0.050000			
Hexachlorobenzene		mg/kg								
o,p'-DDT (leave empty if total DDT results used)		mg/kg								
p,p'-DDT OR Total DDT	updated v5.4ei	mg/kg								
χ Trans-Chlordane (gamma) (leave empty if total Chlordane results used)		mg/kg								
	L									
Chlordecone (kepone)		mg/kg								
Pentachlorobenzene Mirex		mg/kg mg/kg								
Toxaphene (camphechlor)	•	mg/kg								
Tin			L			1			1	ı
Tin (leave empty if Organotin and Tin excl Organotin results used)		mg/kg								
Organotin	•				•			•		
Dibutyltin; DiBT		mg/kg								
Tributyltin; TriBT		mg/kg								
Triphenyltin; TriPT		mg/kg								
Tetrabutyltin; TeBT	l	mg/kg								
Tin excluding Organotin										
Tin excl Organotin		mg/kg								

Haswaste, developed by Dr. lain Haslock.

TP/WS/BH Depth (m) Envirolab reference

Asbestos in Soil	Thresholds
Asbestos detected in Soil (enter Y or N)	Υ
Asbestos % Composition in Soil	see "Carc HP7

Asbestos % Composition in Soil (Matrix Loose Fibres or Microscopic Identifiable Pieces only) % Asbestos in Soil (Fibres)* below Carcinogenic HP7 % Asbestos in Soil (fibres or micro pieces)

Asbestos Identifiable Pieces visible with the naked eye detected in the Soil (enter Y or N)	Y
---	---

TP01	TP02	TP03	TP04	TP05	TP12	TP14	TP15	TP15
0.20	0.20	0.30	0.50	0.20	0.20	0.20	0.20	1.50

NAD	NAD	NAD	NAD	NAD	NAD	NAD	NAD	NAD
	Asbestos in Soil above is "Y", the soil is Hazardous Waste HP5 and HP7							
0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
If Asbestos in Soil abo	Asbestos in Soil above is "Y", but Asbestos % above is "<0.1%", the soil is Non Hazardous Waste. You can only use Asbestos % results where loose fibres or micro pieces are only present. You cannot							

NAD NAD NAD NAD NAD NAD NAD NAD NAD

Identifiable Pieces are Cement, Fragments, Board, Rope etc. ie anything ACM that is not Loose Fibres.

All visual asbestos pieces need to be removed leaving only fibres (or micro pieces) with an Asbestos % Composition in Soil result of <0.1% for the soil to become non-hazardous waste.

Cercinoperic HP7	Hazardous Property	Thresholds	Cut Off Value									
Common C	Corrosive HP8	≥5%		0.00744	0.00631			0.00706		0.00592	0.00778	
Species Targe Crigan Toxicity 11% 10,00000 0,000000 0,00000 0,00000 0,00000 0,00000 0,00000 0,00000 0,00000 0,		≥10%										
Special Traigner Organ Toxicity 1975 1	Specifc Target Organ Toxicity	≥20%	<1%									
Specific Target Organ Toxicity 1-15 1-	Specifc Target Organ Toxicity	≥20%		0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
Specific Target Clayer Toxicity 1-914 1-915 1-	Specifc Target Organ Toxicity	≥1%		0.00691	0.00499	0.00749	0.00710	0.00653	0.00545	0.00525	0.00672	0.00222
Assertion Total HPE	Specifc Target Organ Toxicity	≥10%		0.00300	0.00240	0.00200	0.00160	0.00210	0.00960	0.00210	0.00220	0.00040
Acuta Todich HPS		≥10%		0.00002	0.00002	0.00002	0.00002	0.00002	0.00002	0.00002	0.00002	0.00002
April Today PPE	Acute Toxicity HP6	≥0.1%										
Acust Todor PPC		≥0.25%										
April Control FPC 20.50		≥5%										
Acute Toology HPB		≥25%										
Acust Toxicity HPD		>2 5%										
Acuse Toxicity HPG		≥15%										
Acust Toxicity HPIS		≥55%		0.00009	0.00013	0.00010		0.00007	0.00013	0.00010	0.00013	#VALUE!
Apost Toroice HPS		≥0.1%	<0.1%									
Acute Track HP6		≥0.5%										
Carcinopenic HP7		≥3.5%										
Carcinogenic HP7		≥22.5% >0.1%	<1%									
Carcinogenic HP7		≥0.1%										0.000000000
Carcinogenic HP7 Unknown TPH with Down PP Step marker Net (Unknown TPM with Down PP Step Company PP Step marker Net (Unknown TPM with Down PP Step Company	Carcinogenic HP7	≥1%										
Control Private Priv	Carcinogenic HP7 Unknown TPH	≥1,000mg/kg		0.00		0.00		0.00			0.00	0.00
	Carcinogenic HP7 b(a)p marker test	≥0.01%		#DIV/0!								
leachate	leachate)	H8 ≥11.5		7.66	7.15	8.10	8.20	6.86	7.90	7.67	7.40	8.47
Toxic for Reproduction HP10 23% Multiagenic HP11 201% 0.00981 0.00499 0.00730 0.00730 0.00083 0.00499 0.00672 0.00211 Multiagenic HP11 bids) marker test (Unknown TPH with into) 20.00981 0.00999 0.00730 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.00000 0.00000 0.00000 0.000000 0.000000 0.0000000 0.00000000	leachate)	H8 ≤2										
Mutagenic HP11	Toxic for Reproduction HP10	≥0.3%										
Mutagenic HP11 Unknown TeH 1000mg/sq 21,000mg/sq 2		≥3%										
Mutagenic HP11 k(a)p marker test (Unknown TP1 with ID only) #DIV/01 #D	Mutagenic HP11	≥0.1%		0.00691	0.00499	0.00749	0.00/10	0.00653	0.00499	0.00499	0.00672	0.00211
Multagenic HP11	with ID	≥1,000mg/kg									0.00	
Mutagenic HP11		≥0.01%		#DIV/0!								
Produces Toxic Gases HP12 21,400mg/kg 21,400mg/kg 21,200mg/kg 21,200mg/kg 21,200mg/kg 21,200mg/kg 21,200mg/kg 21,200mg/kg 21,000mg/kg		≥1%		0.00525	0.00485	0.00626	0.00606	0.00424	0.00545	0.00525	0.00586	0.00222
Cyanide 21,20mg/kg Colored C	Produces Toxic Gases HP12	≥1,400mg/kg		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Produces Toxic Gases HP12 22,600mg/kg HP13 Sensitising 210%		≥1,200mg/kg		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Coltoxic HP14 21.0 CompON + Thiospanse + SYRIUE 0.09166 0.13072 0.09816 0.11500 #VALUE	Produces Toxic Gases HP12	≥2,600mg/kg		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Compon + Thick-garde	HP13 Sensitising	≥10%		0.00691	0.00499	0.00749	0.00710	0.00653	0.00545	0.00525	0.00672	0.00222
Coloxic HP14 Compon	Ecotoxic HP14	≥1.0	(except CompCN + Thiocyanate + Xylene +	0.11992	0.09692	0.11072	#VALUE!	0.09166	0.13072	0.09616	0.11500	#VALUE!
Ecotoxic HP14 ≥25% CompCN + Thick-garate + Sylene + BTEX 1%).	Ecotoxic HP14	≥25%	<0.1%	0.02998	0.02423	0.02768	#VALUE!	0.02292	0.03268	0.02404	0.02875	#VALUE!
substance specific thresholds	Ecotoxic HP14	≥25%	(except CompCN + Thiocyanate + Xylene +	0.02999	0.02424	0.02769	#VALUE!	0.02293	0.03269	0.02405	0.02876	#VALUE!
(Benzo(s)anthracene, Dibenzo(shinthracene) (or Total PAH if only used), Sn, TriPT) 0.000004 0.0000004 0.0000004 0.0000004 0.00000000	substance specific thresholds (Benzo(a)anthracene, Dibenz(ah)anthracene (or Total	≥0.0025%		0.00004	0.000004	0.00004	0.000004	0.000004	0.000004	0.000004	0.000004	0.000004
Ecotoxic HP14 individual substance specific thresholds (Co, y-HCH, DiBT, TriBT) 0.00000 0.00001 0.00000 0.00000 0.00001 0.000000	substance specific thresholds (Co,	≥0.025%		0.00000	0.00001	0.00000	0.00000	0.00000	0.00001	0.00000	0.00000	0.00000
Persistent Organic Pollutant (PCB, PBB or POP Pesticides) -0.0005% -0.0000000 0.00000000 0.00000000 0.000000		>0.005%		0.00000000	0.0000500	0.00000000	0.00000000	0.00000000	0.00000500	0.00000000	0.00000000	0.00000000
Dioxins+Furans)	Dioxins+Furans)	>0.0000015%		0.0000000000	0.0000000000	0.0000000000	0.0000000000	0.0000000000	0.0000000000	0.000000000	0.0000000000	0.0000000000
Persistent Organic Pollutant (Individual Dioxins+Furans) >0.0000015%		>0.0000015%		0.0000000000	0.0000000000	0.0000000000	0.0000000000	0.0000000000	0.000000000	0.0000000000	0.0000000000	0.0000000000

If other contaminants need adding to Haswaste, please contact Envirolab.

If visual identifiable pieces of asbestos are present, <u>you cannot use Asbestos % results</u> and the whole soil sample is Hazardous Waste HP5 and HP7 Construction material containing Asbestos 17 06 05.

Therefore, if Asbestos in Soil above is "Y", the Asbestos % above is "<0.1%", but the Asbestos identifiable Pieces visible with the naked eye is "Y", the soil is Hazardous Waste.

Roade	Bypass	313583

TP/WS/BH
Depth (m)
Facilitation and account

% Moisture		%
pH (soil)	Ī	
pH (leachate)		
Arsenic	Ī	mg/kg
Cadmium	updated v5.4ei	mg/kg
Copper		mg/kg
CrVI or Chromium		mg/kg
Lead		mg/kg
Mercury		mg/kg
Nickel		mg/kg
Selenium		mg/kg
Zinc	updated v5.4ei	mg/kg
Barium	Ī	mg/kg
Bervllium		mg/kg
Vanadium		mg/kg
Cobalt	updated v5.4ei	mg/kg
Manganese	updated v5.4ei	mg/kg
Molybdenum	-	mg/kg
Antimony		mg/kg
Aluminium		mg/kg
Bismuth		mg/kg
Crili		mg/kg
Iron	updated v5.4ei	mg/kg
Strontium		mg/kg
Tellurium		mg/kg
Thallium		mg/kg
Titanium		mg/kg
Tungsten		mg/kg
Ammoniacal N		mg/kg
ws Boron	<u>l</u>	mg/kg
PAH (Input Total PAH OR individua	I PAH results)	
Acenaphthene		mg/kg mg/kg
Acenaphthylene Anthracene		mg/kg
Benzo(a)anthracene		mg/kg
Benzo(a)pyrene Benzo(b)fluoranthene		mg/kg mg/kg
		mg/kg
Benzo(ghi)perylene		mg/kg
Benzo(k)fluoranthene Chrysene		mg/kg
Dibenzo(ah)anthracene		mg/kg
Fluoranthene		mg/kg
Fluorene		mg/kg
Indeno(123cd)pyrene		mg/kg
Naphthalene		mg/kg
Phenanthrene		mg/kg
Pyrene		mg/kg
Coronene	ŀ	mg/kg
Total PAHs (16 or 17)	ł	mg/kg
TPH	ı	99
Petrol	Ī	mg/kg
Diesel		mg/kg
Lube Oil		mg/kg
Crude Oil		mg/kg
Olduc Oil		5.119

PAH	(Input	Total	PAH	OR	individual	PAH	results)

Acenaphtnene
Acenaphthylene
Anthracene
Benzo(a)anthracene
Benzo(a)pyrene
Benzo(b)fluoranthene
Benzo(ghi)perylene
Benzo(k)fluoranthene
Chrysene
Dibenzo(ah)anthracene
Fluoranthene
Fluorene
Indeno(123cd)pyrene
Naphthalene
Phenanthrene
Pyrene
Coronene
Total PAHs (16 or 17)
TPH
Petrol

-	IFII
ſ	Petrol
ı	Diesel
L	Lube Oil
г	
L	Crude Oil
Ē	
L	White Spirit / Kerosene

Ordao On	
White Spirit / Kerosene	mg/kg
Creosote	mg/kg
Unknown TPH with ID	mg/kg
Unknown TPHCWG	mg/kg
Total Sulphide	mg/kg
Complex Cyanide	mg/kg
Free (or Total) Cyanide	mg/kg
Thiocyanate	mg/kg
Elemental/Free Sulphur	mg/kg
Phenois Input Total Phenois HPLC	OR individual Phenol

FILEHOIS INPULTOLAL FILEHOIS FIFEC	OK individual Priendi
results.	_
Phenol	mg/kg
Cresols	mg/kg
Xylenols	mg/kg
Resourcinol	mg/kg
Phenois Total by HPLC	mg/kg
BTEX Input Total BTEX OR individ	ual BTEX results.
Benzene	mg/kg
Toluene	mg/kg
Ethylbenzene	mg/kg
Xylenes	mg/kg
Total BTEX	mg/kg
DCPa (DOPa)	

PCBS (POPS)
PCBs Total (eg EC7/WHO12)
PBBs (POPs)

mg/kg

PBBs (POPs)	
Hexabromobiphenyl (Total or PBB153; 2,2',4,4',5,5'- if only	
PBB153; 2,2',4,4',5,5'- if only	
available)	

TP16 0.10	TP16A 0.20	TP16A 0.50	TP17 0.20	WS02 0.20	WS04 0.30	WS05 0.20	WS06 0.10	WS06 1.50	WS08 0.40	WS10 0.40
0.10	0.20	0.50	0.20	0.20	0.30	0.20	0.10	1.50	0.40	0.40
8.17	8.78	8.17	7.91	7.66	8.11	7.55	7.66	7.75	8.02	7.97
3 0.8 12 18 18 0.17 17	1 <0.5 2 4 2 0.31 3	3 0.7 10 20 13 0.17 17	3 0.7 13 20 16 0.29 16	7 1.3 13 33 19 0.17 33 1	3 0.8 14 18 16 0.20 16 1	<1 0.8 20 25 16 0.17 21 1	4 0.8 13 22 17 0.17 19	<1 <0.5 21 29 16 0.17 3 1	6 1.1 13 22 14 0.17 23 1	6 0.9 16 28 13 0.17 30
54	5	45	50	72	52	58	55	9	65	50
0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
0.01 0.02 0.04 0.04 0.05 0.05 0.07 0.06 0.04 0.08 0.01 0.03 0.03 0.03	0.01 0.02 0.16 0.28 0.32 0.29 0.12 0.19 0.05 0.17 0.01 0.25 0.03	0.01 0.02 0.04 0.04 0.05 0.05 0.07 0.06 0.04 0.03 0.03 0.03	0.01 0.02 0.04 0.04 0.05 0.05 0.07 0.06 0.04 0.08 0.01 0.03 0.03	0.01 0.02 0.04 0.04 0.05 0.05 0.07 0.06 0.04 0.08 0.01 0.03 0.03	0.01 0.02 0.04 0.04 0.05 0.05 0.07 0.06 0.04 0.08 0.01 0.03 0.03 0.03	0.01 0.02 0.04 0.04 0.05 0.05 0.07 0.06 0.04 0.08 0.01 0.03 0.03	0.01 0.02 0.06 0.07 0.05 0.07 0.05 0.04 0.09 0.01 0.05 0.05	0.01 0.02 0.04 0.04 0.05 0.08 0.07 0.08 0.04 0.08 0.01 0.06 0.03 0.03	0.01 0.02 0.04 0.04 0.05 0.05 0.07 0.06 0.04 0.08 0.01 0.03 0.03 0.03	0.01 0.02 0.04 0.05 0.05 0.07 0.06 0.04 0.08 0.01 0.03 0.03 0.03
0.1	0.8	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
0.01 0.01 0.01 0.01 0.01	0.01 0.01 0.01 0.01 0.01	0.01 0.01 0.01 0.01	0.01 0.01 0.01 0.01 0.01	0.01 0.01 0.01 0.01 0.01	0.01 0.01 0.01 0.01 0.01	0.01 0.01 0.01 0.01 0.01	0.01 0.01 0.01 0.01 0.01	0.01 0.01 0.01 0.01 0.01	0.01 0.01 0.01 0.01 0.01	0.01 0.01 0.01 0.01
		2.01	2.01							0.0

Haswaste, developed by Dr. lain Haslock.

Roade Bypass 313583

TP/WS/BH	
Depth (m)	
Envirolab reference	

POPs Dioxins and Furans Input T	otal Dioxins and Furans
OR individual Dioxin and Furan resi	ults.
2,3,7,8-TeCDD	mg/kg
1,2,3,7,8-PeCDD	mg/kg
1,2,3,4,7,8-HxCDD	mg/kg
1,2,3,6,7,8-HxCDD	mg/kg
1,2,3,7,8,9-HxCDD	mg/kg
1,2,3,4,6,7,8-HpCDD	mg/kg
OCDD	mg/kg
2,3,7,8-TeCDF	mg/kg
1,2,3,7,8-PeCDF	mg/kg
2,3,4,7,8-PeCDF	mg/kg
1,2,3,4,7,8-HxCDF	mg/kg
1,2,3,6,7,8-HxCDF	mg/kg
2,3,4,6,7,8-HxCDF	mg/kg
1,2,3,7,8,9-HxCDF	mg/kg
1,2,3,4,6,7,8-HpCDF	mg/kg
1,2,3,4,7,8,9-HpCDF	mg/kg
OCDF	mg/kg
Total Dioxins and Furans	mg/kg
	-

TP16 0.10	TP16A 0.20	TP16A 0.50	0.20	WS02 0.20	0.30	WS05 0.20	WS06 0.10	WS06 1.50	0.40	WS10 0.40

13						
g						
g						
g						
g						
g						
g						
g g						
g						
g						
g						
g						
g						
g						
g						
g						
g						
g						

Some Pesticides (POPs unless otherwise stated)

Aldrin		mg/kg
α Hexachlorocyclohexane (alpha-		ilig/kg
HCH) (leave empty if total HCH		mg/kg
results used)		ilig/kg
β Hexachlorocyclohexane (beta-		
		mg/kg
HCH) (leave empty if total HCH		ilig/kg
results used) α Cis-Chlordane (alpha) OR Total		
		mg/kg
Chlordane		
δ Hexachlorocyclohexane (delta-		
HCH) (leave empty if total HCH		mg/kg
results used)		
Dieldrin	updated v5.4ei	mg/kg
Endrin		mg/kg
γ Hexachlorocyclohexane (gamma-		
HCH) (lindane) OR Total HCH	updated v5.4ei	mg/kg
Heptachlor		mg/kg
Hexachlorobenzene		mg/kg
o,p'-DDT (leave empty if total		mg/kg
DDT results used)		
p,p'-DDT OR Total DDT	updated v5.4ei	mg/kg
χ Trans-Chlordane (gamma)		
(leave empty if total Chlordane		mg/kg
results used)		
Chlordecone (kepone)		mg/kg
Pentachlorobenzene		mg/kg
Mirex		mg/kg
Toxaphene (camphechlor)		mg/kg
Tin		
Tin (leave empty if Organotin and		
Tin excl Organotin results used)		mg/kg
Till exci Organolin results used)		
Organotin		
Dibutyltin; DiBT		mg/kg
Tributyltin; TriBT		mg/kg
Triphenyltin; TriPT		mg/kg
Tetrabutyltin; TeBT		mg/kg
Tin excluding Organotin		
Tin excl Organotin		mg/kg
Till Exci Organouil		mg/kg

0.050000	0.050000				
0.050000	0.050000				
0.050000	0.050000				
0.050000	0.050000				
0.050000	0.050000				
0.050000	0.050000				_
0.050000	0.050000				
			•		
			1	l .	
			1	1	

NAD

Haswaste, developed by Dr. Iain Haslock.

TP/WS/BH Depth (m) Envirolab reference

Asbestos in Soil	Thresholds
Asbestos detected in Soil (enter Y or N)	Υ
Asbestos % Composition in Soil	ana "Cara HD7

Aspestos % Composition in Soil (Matrix Loose Fibres or Microscopic Identifiable Pieces only) Carcinogenic HP7 % Asbestos in Soil (fibres or micro pieces)

Asbestos Identifiable Pieces visible with the naked eye detected in the Soil (enter Y or N)	Υ
---	---

TP16	TP16A	TP16A	TP17	WS02	WS04	WS05	WS06	WS06	WS08	WS10
0.10	0.20	0.50	0.20	0.20	0.30	0.20	0.10	1.50	0.40	0.40

NAD	NAD	NAD	NAD	NAD	NAD	NAD	NAD	NAD	NAD	NAD	
Asbestos in Soil above is 'Y', the soil is Hazardous Waste HP5 and HP7											
0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	
If Asbestos in Soil above is "Y", but Asbestos % above is "<0.1%, the soil is Non Hazardous Waste. You can only use Asbestos % results where loose fibres or micro pieces are only present. You cannot. If Asbestos in Soil above is "Y", but Asbestos % results where loose fibres or micro pieces are only present.											
			use aspestos % result	is when visual identifial	ne pieces are present.						
İ											

If visual identifiable pieces of asbestos are present, <u>you cannot use Asbestos % results</u> and the whole soil sample is Hazardous Waste HP5 and HP7 Construction material containing Asbestos 17 06 05. If visual identifiable pieces of asbestos are p
Therefore, if Asbestos in Soil above is "Y", the Asbestos & above is "<0.1%", but the Asbestos identifiable Pieces visible with the naked eye is "Y", the soil is Hazardous Waste.

If visual identifiable pieces of asbestos are p

Identifiable Pieces are Cement, Fragments, Board, Rope etc. ie anything ACM that is not Loose Fibres.

			All visual as	bestos pieces need to l		s are Cement, Fragme y fibres (or micro piece				il to become non-hazar	dous waste.	All visual as	bestos pieces need to I
Hazardous Property	Thresholds	Cut Off Value											
Corrosive HP8	≥5%	<1%	0.00385	0.00090	0.00424	0.00424	0.00726	0.00385	#VALUE!	0.00475	#VALUE!	0.00502	0.00617
Irritant HP4	≥10%	<1%	0.00175	0.00036	0.00153	0.00187	0.00239	0.00198	#VALUE!	0.00200	#VALUE!	0.00226	0.00260
Irritant HP4	≥20%	<1%	0.00481	0.00086	0.00458	0.00472	0.00815	0.00483	0.00652	0.00533	0.00300	0.00613	0.00789
Specific Target Organ Toxicity HP5	≥1%		0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
Specific Target Organ Toxicity HP5	≥20%		0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
Specific Target Organ Toxicity HP5	≥1%		0.00346	0.00077	0.00384	0.00384	0.00667	0.00346	0.00480	0.00422	0.00557	0.00465	0.00606
Specifc Target Organ Toxicity HP5	≥10%		0.00180	0.00020	0.00130	0.00160	0.00190	0.00160	0.00160	0.00170	0.00160	0.00140	0.00130
Aspiration Toxicity HP5	≥10%	<0.1%	0.00002	0.00009	0.00002	0.00002	0.00002	0.00002	0.00002	0.00002 0.00000	0.00002	0.00002 0.00000	0.00002
Acute Toxicity HP6 Acute Toxicity HP6	≥0.1% >0.25%	<0.1%	0.00041	0.00000	0.00041	0.00044	0.00000	0.00042	#VALUE!	0.00000	#VALUE!	0.00000	0.00081
Acute Toxicity HP6	≥5%	<0.1%	0.00360	0.00093	0.00398	0.00401	0.00648	0.00360	0.00494	0.00437	0.00571	0.00437	0.00552
Acute Toxicity HP6	≥25%	<1%	0.00669	#VALUE!	0.00595	0.00639	0.01018	0.00651	0.00820	0.00710	#VALUE!	0.00764	0.00927
Acute Toxicity HP6	≥0.25%	<0.1%	0.00002	0.00004	0.00002	0.00003	0.00002	0.00002	0.00002	0.00002	0.00002	0.00002	0.00002
Acute Toxicity HP6	≥2.5%	<0.1%	0.00346	0.00077	0.00384	0.00385	0.00634	0.00346	0.00480	0.00422	0.00557	0.00422	0.00538
Acute Toxicity HP6	≥15%	<0.1% <1%	0.00000	0.00001 #VALUE!	0.00000	0.00001	0.00000 0.00013	0.00000	0.00000	0.00000	0.00000 #VALUE!	0.00000 0.00011	0.00000
Acute Toxicity HP6 Acute Toxicity HP6	≥00% >0.1%	<0.1%	0.00008	0.00000	0.00007	0.00009	0.00013	0.00000	0.00008	0.00008	0.00000	0.00011	0.00009
Acute Toxicity HP6	≥0.5%	<0.1%	0.00355	#VALUE!	0.00393	0.00394	0.00648	0.00356	0.00490	0.00432	#VALUE!	0.00435	0.00548
Acute Toxicity HP6	≥3.5%	<0.1%	0.00014	0.00014	0.00014	0.00014	0.00014	0.00014	0.00014	0.00014	0.00014	0.00014	0.00014
Acute Toxicity HP6	≥22.5%	<1%	0.00659	0.00104	0.00587	0.00631	0.01004	0.00642	0.00811	0.00701	0.00458	0.00752	0.00917
Carcinogenic HP7	≥0.1%		0.00346	0.00077	0.00384	0.00384	0.00667	0.00346	#VALUE!	0.00422	#VALUE!	0.00465	0.00606
Carcinogenic HP7	≥0.1%		0.000000000	0.000000000	0.000000000	0.000000000	0.000000000	0.000000000	0.000000000	0.000000000	0.000000000	0.000000000	0.000000000
Carcinogenic HP7 Carcinogenic HP7 Unknown TPH with ID	≥1% ≥1,000mg/kg		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Carcinogenic HP7 b(a)p marker test (Unknown TPH with ID only)	≥0.01%		#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
pH Corrosive HP8 pH (soil or leachate)	H8 ≥11.5		8.17	8.78	8.17	7.91	7.66	8.11	7.55	7.66	7.75	8.02	7.97
pH Corrosive HP8 pH (soil or leachate)	H8 ≤2		8.17	8.78	8.17	7.91	7.66	8.11	7.55	7.66	7.75	8.02	7.97
Toxic for Reproduction HP10	≥0.3%		0.00343	0.00061	0.00343	0.00323	0.00667	0.00323	0.00424	0.00384	0.00160	0.00465	0.00606
Toxic for Reproduction HP10	≥3%		0.00346	0.00077	0.00384	0.00384	0.00634	0.00346	0.00480	0.00422	0.00557	0.00422	0.00538
Mutagenic HP11 Mutagenic HP11 Unknown TPH	≥0.1%		0.00346	0.00077	0.00384	0.00384	0.00634	0.00346	0.00480	0.00422	0.00557	0.00422	0.00538
with ID Mutagenic HP11 b(a)p marker test	≥1,000mg/kg		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
(Unknown TPH with ID only)	≥0.01%		#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
Mutagenic HP11	≥1%		0.00343	0.00061	0.00343	0.00323	0.00667	0.00323	0.00424	0.00384	0.00061	0.00465	0.00606
Produces Toxic Gases HP12	≥1,400mg/kg		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Sulphide Produces Toxic Gases HP12	≥1,200mg/kg		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Cyanide Produces Toxic Gases HP12	≥1,200mg/kg		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Thiocyanate	≥2,600mg/kg												
HP13 Sensitising	≥10%		0.00346	0.00077	0.00384	0.00384	0.00667	0.00346	0.00480	0.00422	0.00557	0.00465	0.00606
Ecotoxic HP14	≥1.0	<0.1% (except CompCN + Thiocyanate + Xylene + BTEX 1%).	0.06995	#VALUE!	0.06404	0.06848	0.10656	0.06826	#VALUE!	0.07575	#VALUE!	0.08393	0.08757
Ecotoxic HP14	≥25%	<0.1%	0.01749	#VALUE!	0.01601	0.01712	0.02664	0.01707	#VALUE!	0.01894	#VALUE!	0.02098	0.02189
Ecotoxic HP14	≥25%	<0.1% (except CompCN + Thiocyanate + Xylene + BTEX 1%).	0.01750	#VALUE!	0.01602	0.01713	0.02665	0.01708	#VALUE!	0.01895	#VALUE!	0.02099	0.02190
Ecotoxic HP14 individual substance specific thresholds (Benzo(a)anthracene, Dibenz(ah)anthracene (or Total PAH if only used), Sn, TriPT)	≥0.0025%		0.000004	0.000016	0.00004	0.000004	0.00004	0.000004	0.000004	0.000006	0.00004	0.000004	0.000004
Ecotoxic HP14 individual substance specific thresholds (Co, γ-HCH, DiBT, TriBT)	≥0.025%		0.00000	0.00001	0.00000	0.00001	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
Persistent Organic Pollutant (PCB, PBB or POP Pesticides)	>0.005%		0.00000000	0.00000500	0.00000000	0.00000500	0.00000000	0.00000000	0.00000000	0.00000000	0.00000000	0.00000000	0.00000000
Persistent Organic Pollutant (Total Dioxins+Furans)	>0.0000015%		0.0000000000	0.000000000	0.0000000000	0.000000000	0.0000000000	0.000000000	0.000000000	0.000000000	0.000000000	0.0000000000	0.000000000
Persistent Organic Pollutant (Individual Dioxins+Furans)	>0.0000015%		0.0000000000	0.0000000000	0.0000000000	0.0000000000	0.0000000000	0.0000000000	0.0000000000	0.0000000000	0.0000000000	0.0000000000	0.0000000000

If other contaminants need adding to Haswaste, please contact